1.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
2.Correlations of pontine biological indicators on fetal brain median sagittal MRI with gestational week
Lingxiu HOU ; Bingguang LIU ; Ying YUAN ; Yimei LIAO ; Qiaozhen ZHU ; Hongbo GUO ; Ying TAN ; Huiying WEN ; Fang YAN ; Shengli LI
Chinese Journal of Medical Imaging Technology 2024;40(1):88-92
Objective To observe the correlations of pontine biological indicators on fetal brain median sagittal MRI with gestational week.Methods Data of head MRI of 226 normal fetuses without obvious abnormalities of central nervous system(normal group)and 17 fetuses with abnormalities(abnormal group)at gestational age of 23 to 38 weeks were retrospectively analyzed.Pontine biological indicators based on median sagittal MRI were obtained,including pons anteroposterior diameter(PAD),total pons area(TPA),pontine basal anteroposterior length(AP),pontine basal cranio-caudal length(CC),basis pontis area(BPA)and pontine angle of midbrain(MAP).According to the gestational week,the fetuses of normal group were divided into 8 subgroups.The distributing ranges of pontine biological indicators at different gestational weeks were analyzed,and the correlations of pontine biological indicators with gestational week in normal group were explored,and the developmental status of fetal pons in abnormal group were assessed.Results In normal group,PAD,TPA,AP,CC and BPA all showed linear positive correlation(r=0.887,0.914,0.787,0.866,0.865,all P<0.001),while MAP was not significantly correlated with gestational week(P>0.05).Among 17 fetuses in abnormal group,abnormal PAD or TPA was found each in 8 fetuses,abnormal AP was observed in 14,abnormal CC was noticed in 3 and abnormal BPA was found in 11 fetuses.Conclusion Fetal pontine biological indicators such as PAD,TPA,AP,CC and BPA on median sagittal MRI were positively correlated with gestational week,hence being able to be used for evaluating fetal pontine development.
3.Influence of Modified Shashen Maidong Decoction Combined with Camrelizumab Immunotherapy Plus Chemotherapy on the Efficacy,Survival Status,and Serum CYFRA21-1 and NSE Levels in Patients with Advanced Non-Small Cell Lung Cancer
Hai-Feng WANG ; Yi-Qun ZHAO ; Xiao-Li DU ; Lu LIU ; Bao-Song HOU ; Wen-Yan ZHAN
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):606-611
Objective To investigate the influence of modified Shashen Maidong Decoction combined with Camrelizumab immunotherapy plus chemotherapy on the efficacy,survival status and serum cytokeratin 19 fragment(CYFRA21-1)and neuron-specific enolase(NSE)levels in patients with advanced non-small cell lung cancer(NSCLC).Methods Forty patients with advanced NSCLC of lung-stomach yin deficiency with intense heat-toxin type were randomly divided into a control group and a study group,with 20 patients in each group.The patients in the control group were given Camrelizumab immunotherapy plus chemotherapy,and the patients in the study group were given modified Shashen Maidong Decoction combined with Camrelizumab immunotherapy plus chemotherapy,with 21 days as a course of treatment and for a total of 4 courses of treatment.The changes of serum NSE and CYFRA21-1 levels in the two groups before and after treatment were observed,and the clinical efficacy,survival status and the incidence of toxic and side effects were compared between the two groups.Results(1)After 4 courses of treatment,the total effective rate of the study group was 70.00%(14/20),which was significantly higher than that of the control group(9/20,45.00%),but the intergroup comparison(tested by chi-square test)showed that the difference was not statistically significant(P>0.05).(2)After 2 years of follow-up,the overall survival(OS),time to progression(TTP),and progression-free survival(PFS)of the patients in the study group were significantly prolonged compared with those in the control group(P<0.01).(3)After treatment,the serum NSE and CYFRA21-1 levels of the patients in the two groups were decreased compared with those before treatment(P<0.05),and the decrease of serum NSE and CYFRA21-1 levels in the study group was significantly superior to that in the control group(P<0.01).(4)The incidence of toxic and side effects in the study group was 25.00%(5/20),which was significantly lower than that of 65.00%(13/20)in the control group,and the intergroup comparison showed that the difference was statistically significant(P<0.05).Conclusion Modified Shashen Maidong Decoction combined with Camrelizumab immunotherapy plus chemotherapy has satisfactory therapeutic effect on patients with advanced NSCLC,which can reduce the toxic and side effects of chemotherapy,lower the level of serum tumor markers,and prolong the survival period and time to progression(TTP)of the patients.
4. Mechanism and experimental validation of Zukamu granules in treatment of bronchial asthma based on network pharmacology and molecular docking
Yan-Min HOU ; Li-Juan ZHANG ; Yu-Yao LI ; Wen-Xin ZHOU ; Hang-Yu WANG ; Jin-Hui WANG ; Ke ZHANG ; Mei XU ; Dong LIU ; Jin-Hui WANG
Chinese Pharmacological Bulletin 2024;40(2):363-371
Aim To anticipate the mechanism of zuka- mu granules (ZKMG) in the treatment of bronchial asthma, and to confirm the projected outcomes through in vivo tests via using network pharmacology and molecular docking technology. Methods The database was examined for ZKMG targets, active substances, and prospective targets for bronchial asthma. The protein protein interaction network diagram (PPI) and the medication component target network were created using ZKMG and the intersection targets of bronchial asthma. The Kyoto Encyclopedia of Genes and Genomics (KEGG) and gene ontology (GO) were used for enrichment analysis, and network pharmacology findings were used for molecular docking, ovalbumin (OVA) intraperitoneal injection was used to create a bronchial asthma model, and in vivo tests were used to confirm how ZKMG affected bronchial asthma. Results There were 176 key targets for ZKMG's treatment of bronchial asthma, most of which involved biological processes like signal transduction, negative regulation of apoptotic processes, and angiogenesis. ZKMG contained 194 potentially active components, including quercetin, kaempferol, luteolin, and other important components. Via signaling pathways such TNF, vascular endothelial growth factor A (VEGFA), cancer pathway, and MAPK, they had therapeutic effects on bronchial asthma. Conclusion Key components had strong binding activity with appropriate targets, according to molecular docking data. In vivo tests showed that ZKMG could reduce p-p38, p-ERKl/2, and p-I
5.Spatial Heterogeneity and Risk Factors of Dental Caries in 12-Year-Old Children in Shanxi Province,China
Hou RUXIA ; Yang TINGTING ; Liu JIAJIA ; Chen HAO ; Kang WEN ; Li JUNMING ; Shi XIAOTONG ; Liang YI ; Liu JUNYU ; Zhao BIN ; Wang XIANGYU
Biomedical and Environmental Sciences 2024;37(10):1173-1183
Objective This study aimed to explore the spatial heterogeneity and risk factors for dental caries in 12-year-old children in Shanxi province,China. Methods The data encompassed 3,721 participants from the two most recent oral health surveys conducted across 16 districts in Shanxi Province in 2015 and 2018.Eighteen specific variables were analyzed to examine the interplay between socioeconomic factors,medical resources and environmental conditions.The Geo-detector model was employed to assess the impacts and interactions of these ecological factors. Results Socioeconomic factors(Q=0.30,P<0.05)exhibited a more substantial impact compared to environmental(Q=0.19,P<0.05)and medical resource factors(Q=0.25,P<0.05).Notably,the urban population percentage(UPP)demonstrated the most significant explanatory power for the spatial heterogeneity in caries prevalence,as denoted by its highest q-value(q=0.51,P<0.05).Additionally,the spatial distribution's heterogeneity of caries was significantly affected by SO2 concentration(q=0.39,P<0.05)and water fluoride levels(q=0.27,P<0.05)among environmental factors. Conclusion The prevalence of caries exhibited spatial heterogeneity,escalating from North to South in Shanxi Province,China,influenced by socioeconomic factors,medical resources,and environmental conditions to varying extents.
6.The Effect of Mitochondrial Damage in Chondrocytes on Osteoarthritis
Zhen-Wei LI ; Jing-Yu HOU ; Yu-Ze LIN ; Zhi-Qi ZHANG ; Shang-Yi LIU ; Xiao-Wen LIU ; Kang-Quan SHOU
Progress in Biochemistry and Biophysics 2024;51(7):1576-1588
The pathogenesis of osteoarthritis (OA) is related to a variety of factors such as mechanical overload, metabolic dysfunction, aging, etc., and is a group of total joint diseases characterized by intra-articular chondrocyte apoptosis, cartilage fibrillations, synovial inflammation, and osteophyte formation. At present, the treatment methods for osteoarthritis include glucosamine, non-steroidal anti-inflammatory drugs, intra-articular injection of sodium hyaluronate, etc., which are difficult to take effect in a short period of time and require long-term treatment, so the patients struggle to adhere to doctor’s advice. Some methods can only provide temporary relief without chondrocyte protection, and some even increase the risk of cardiovascular disease and gastrointestinal disease. In the advanced stages of OA, patients often have to undergo joint replacement surgery due to pain and joint dysfunction. Mitochondrial dysfunction plays an important role in the development of OA. It is possible to improve mitochondrial biogenesis, quality control, autophagy balance, and oxidative stress levels, thereby exerting a protective effect on chondrocytes in OA. Therefore, compared to traditional treatments, improving mitochondrial function may be a potential treatment for OA. Here, we collected relevant literature on mitochondrial research in OA in recent years, summarized the potential pathogenic factors that affect the development of OA through mitochondrial pathways, and elaborated on relevant treatment methods, in order to provide new diagnostic and therapeutic ideas for the research field of osteoarthritis.
7.The Role of α7nAChR in Alzheimer’s Disease
Dao-Bo DING ; Wen-Jun MU ; Xin LI ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2024;51(11):2897-2904
As the global population continues to age, the incidence of Alzheimer’s disease (AD), one of the most common neurodegenerative diseases, continues to rise significantly. As the disease progresses, the patient’s daily living abilities gradually decline, potentially leading to a complete loss of self-care abilities. According to estimates by the Alzheimer’s Association and the World Health Organization, AD accounts for 60%-70% of all other dementia cases, affecting over 55 million people worldwide. The case number is estimated to double by 2050. Despite extensive research, the precise etiology and pathogenesis of AD remain elusive. Researchers have a profound understanding of the disease’s pathological hallmarks, which include amyloid plaques and neurofibrillary tangles resulting from the abnormal phosphorylation of Tau protein. However, the exact causes and mechanisms of the disease are still not fully understood, leaving a vital gap in our knowledge and understanding of this debilitating disease. A crucial player that has recently emerged in the field of AD research is the α7 nicotinic acetylcholine receptor (α7nAChR). α7nAChR is composed of five identical α7 subunits that form a homopentamer. This receptor is a significant subtype of acetylcholine receptor in the central nervous system and is widely distributed in various regions of the brain. It is particularly prevalent in the hippocampus and cortical areas, which are regions associated with learning and memory. α7nAChR plays a pivotal role in several neurological processes, including neurotransmitter release, neuronal plasticity, cell signal transduction, and inflammatory response, suggesting its potential involvement in numerous neurodegenerative diseases, including AD. In recent years, the role of α7nAChR in AD has been the focus of extensive research. Emerging evidence suggests that α7nAChR is involved in several critical steps in the disease progression of AD. These include involvement in the metabolism of amyloid β-protein (Aβ), the phosphorylation of Tau protein, neuroinflammatory response, and oxidative stress. Each of these processes contributes to the development and progression of AD, and the involvement of α7nAChR in these processes suggests that it may play a crucial role in the disease’s pathogenesis. The potential significance of α7nAChR in AD is further reinforced by the observation that alterations in its function or expression can have significant effects on cognitive abilities. These findings suggest that α7nAChR could be a promising target for therapeutic intervention in AD. At present, the results of drug clinical studies targeting α7nAChR show that these compounds have improvement and therapeutic effects in AD patients, but they have not reached the degree of being widely used in clinical practice, and their drug development still faces many challenges. Therefore, more research is needed to fully understand its role and to develop effective treatments based on this understanding. This review aims to summarize the current understanding of the association between α7nAChR and AD pathogenesis. We provide an overview of the latest research developments and insights, and highlight potential avenues for future research. As we deepen our understanding of the role of α7nAChR in AD, it is hoped that this will pave the way for the development of novel therapeutic strategies for this devastating disease. By targeting α7nAChR, we may be able to develop more effective treatments for AD, ultimately improving the quality of life for patients and their families.
8.Impacts of gut microbiota on metabolism and efficacy of timosaponin A-III
Wen-jin HUANG ; Ling-yun PAN ; Xin-xin GAO ; Wei-ze ZHU ; Hou-kai LI
Acta Pharmaceutica Sinica 2024;59(8):2372-2380
Intraperitoneal administration of timosaponin A-III (TA-III) has therapeutic effects on high-fat diet-induced metabolic dysfunction-associated steatotic liver disease (MASLD), but oral administration has no effect. This suggests that gut microbiota may affect the oral bioavailability of TA-III. Metabolic dysfunction-associated steatohepatitis (MASH) is an inflammatory subtype of MASLD. To investigate the therapeutic effect of different administration modes of TA-III on MASH and its relationship with gut microbiota metabolism. In this study, a MASH mouse model was induced by choline-deficient,
9.Construction and characterization of lpxC deletion strain based on CRISPR/Cas9 in Acinetobacter baumannii
Zong-ti SUN ; You-wen ZHANG ; Hai-bin LI ; Xiu-kun WANG ; Jie YU ; Jin-ru XIE ; Peng-bo PANG ; Xin-xin HU ; Tong-ying NIE ; Xi LU ; Jing PANG ; Lei HOU ; Xin-yi YANG ; Cong-ran LI ; Lang SUN ; Xue-fu YOU
Acta Pharmaceutica Sinica 2024;59(5):1286-1294
Lipopolysaccharides (LPS) are major outer membrane components of Gram-negative bacteria. Unlike most Gram-negative bacteria,
10.Antipyretic and anti-inflammatory effects and quality evaluation of a new type of Lonicera Japonicae Flos granule raw decoction piece
Zhi-jun GUO ; Meng-meng HOU ; Dan GAO ; Yu-han WU ; Ze-min YANG ; Jia-lu WANG ; Bo GAO ; Xi-wen LI
Acta Pharmaceutica Sinica 2024;59(7):2087-2097
Traditional decoction pieces have low efficiency, poor batch-to-batch consistency, and irregular physical form, making it difficult to meet the demands of modern automated production and precise and rapid clinical blending. Therefore, this study aims to develop a new type of granular drinking tablet to meet the demand for high-quality development in the traditional Chinese medicine industry. In the current study, the differences and similarities between the new Lonicerae Japonicae Flos (LJF) granular drinking tablets and the traditional ones were evaluated based on the flowability, the paste rate of the standard soup, the characterization fingerprint, the degree of pasting, the content of active ingredients, the transfer rate, and its traditional antipyretic and anti-inflammatory efficacy, using the traditional

Result Analysis
Print
Save
E-mail