1.Screening key genes of PANoptosis in hepatic ischemia-reperfusion injury based on bioinformatics
Lirong ZHU ; Qian GUO ; Jie YANG ; Qiuwen ZHANG ; Guining HE ; Yanqing YU ; Ning WEN ; Jianhui DONG ; Haibin LI ; Xuyong SUN
Organ Transplantation 2025;16(1):106-113
Objective To explore the relationship between PANoptosis and hepatic ischemia-reperfusion injury (HIRI), and to screen the key genes of PANoptosis in HIRI. Methods PANoptosis-related differentially expressed genes (PDG) were obtained through the Gene Expression Omnibus database and GeneCards database. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to explore the biological pathways related to PDG. A protein-protein interaction network was constructed. Key genes were selected, and their diagnostic value was assessed and validated in the HIRI mice. Immune cell infiltration analysis was performed based on the cell-type identification by estimating relative subsets of RNA transcripts. Results A total of 16 PDG were identified. GO analysis showed that PDG were closely related to cellular metabolism. KEGG analysis indicated that PDG were mainly enriched in cellular death pathways such as apoptosis and immune-related signaling pathways such as the tumor necrosis factor signaling pathway. GSEA results showed that key genes were mainly enriched in immune-related signaling pathways such as the mitogen-activated protein kinase (MAPK) signaling pathway. Two key genes, DFFB and TNFSF10, were identified with high accuracy in diagnosing HIRI, with areas under the curve of 0.964 and 1.000, respectively. Immune infiltration analysis showed that the control group had more infiltration of resting natural killer cells, M2 macrophages, etc., while the HIRI group had more infiltration of M0 macrophages, neutrophils, and naive B cells. Real-time quantitative polymerase chain reaction results showed that compared with the Sham group, the relative expression of DFFB messenger RNA in liver tissue of HIRI group mice increased, and the relative expression of TNFSF10 messenger RNA decreased. Cibersort analysis showed that the infiltration abundance of naive B cells was positively correlated with DFFB expression (r=0.70, P=0.035), and the infiltration abundance of M2 macrophages was positively correlated with TNFSF10 expression (r=0.68, P=0.045). Conclusions PANoptosis-related genes DFFB and TNFSF10 may be potential biomarkers and therapeutic targets for HIRI.
2.Objective characteristics of tongue manifestation in different stages of damp-heat syndrome in diabetic kidney disease
Zhaoxi DONG ; Yang SHI ; Jiaming SU ; Yaxuan WEN ; Zheyu XU ; Xinhui YU ; Jie MEI ; Fengyi CAI ; Xinyue ZANG ; Yan GUO ; Chengdong PENG ; Hongfang LIU
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):398-411
Objective:
To investigate the objective characteristics of tongue manifestation in different stages of damp-heat syndrome in diabetic kidney disease (DKD).
Methods:
A cross-sectional study enrolled 134 patients with DKD G3-5 stages who met the diagnostic criteria for damp-heat syndrome in DKD. The patients were treated at Dongzhimen Hospital, Beijing University of Chinese Medicine, from May 2023 to January 2024. The patients were divided into three groups: DKD G3, DKD G4, and DKD G5 stage, with 53, 33, and 48 patients in each group, respectively. Clinical general data (gender, age, and body mass index) and damp-heat syndrome scores were collected from the patients. The YZAI-02 traditional Chinese medicine (TCM) AI Tongue Image Acquisition Device was used to capture tongue images from these patients. The accompanying AI Open Platform for TCM Tongue Diagnosis of the device was used to analyze and extract tongue manifestation features, including objective data on tongue color, tongue quality, coating color, and coating texture. Clinical data and objective tongue manifestation characteristics were compared among patients with DKD G3-5 based on their DKD damp-heat syndrome status.
Results:
No statistically significant difference in gender or body mass index was observed among the three patient groups. The DKD G3 stage group had the highest age (P<0.05). The DKD G3 stage group had a lower score for symptoms of poor appetite and anorexia(P<0.05) than the DKD G5 group. No statistically significant difference was observed in damp-heat syndrome scores among the three groups. Compared with the DKD G5 stage group, the DKD G3 stage group showed a decreased proportion of pale color at the tip and edges of the tongue (P<0.05). The DKD G4 stage group exhibited an increased proportion of crimson at the root of the tongue, a decreased proportion of thick white tongue coating at the root, a decreased proportion of pale color at the tip and edges of the tongue, an increased hue value (indicating color tone) of the tongue color in the middle, an increased brightness value (indicating color lightness) of the tongue coating color in the middle, and an increased thickness of the tongue coating (P<0.05). No statistically significant difference was observed in other tongue color proportions, color chroma values, body characteristics, coating color proportions, coating color chroma values, and coating texture characteristics among the three groups.
Conclusion
Tongue features differ in different stages of DKD damp-heat syndrome in multiple dimensions, enabling the inference that during the DKD G5 stage, the degree of qi and blood deficiency in the kidneys, heart, lungs, liver, gallbladder, spleen, and stomach is prominent. Dampness is more likely to accumulate in the lower jiao, particularly in the kidneys, whereas heat evil in the spleen and stomach is the most severe. These insights provide novel ideas for the clinical treatment of DKD.
3.Effect of Carbohydrate Intake Order on Metabolic Profiles of Endurance Exercise Mice in a High-temperature Environment
Huan-Yu WANG ; Guo-Dong ZHOU ; Ru-Wen WANG ; Jun QIU ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1529-1543
ObjectiveThe primary objective of this study was to investigate the effects of carbohydrate intake order on post-exercise recovery and metabolic regulation under heat stress, particularly in models of exercise induced fatigue. Given the increasing significance of optimizing nutritional strategies to support performance in extreme environmental conditions, this study aimed to provide experimental evidence that contributes to a better understanding of how the sequence in which carbohydrates are consumed impacts exercise recovery, metabolic homeostasis, and fatigue alleviation in a high-temperature environment. MethodsA mouse model of exercise-induced fatigue was established under high-temperature (35°C) to simulate heat stress. The subjects were divided into 3 distinct groups based on their carbohydrate intake order: the “mixed intake” group (HOT_MIX), where all macronutrients (carbohydrates, proteins, and fats) were consumed in a balanced ratio; the “carbohydrate-first intake” group (HOT_CHO), where carbohydrates were consumed first followed by other macronutrients; the “carbohydrate-later intake” group (HOT_PRO), where proteins and fats were consumed prior to carbohydrates. Each group underwent a 7 d intervention period with daily intake according to their designated group. Exercise performance was assessed using rotarod retention time test, and biomarkers of muscle damage, such as lactate dehydrogenase (LDH), creatine kinase (CK), lactate (LD), alanine aminotransferase (ALT), and non-esterified fatty acids (NEFA), were measured. Furthermore, targeted metabolomics analyses were conducted to investigate metabolic shifts in response to different dietary strategies, and KEGG pathway enrichment analysis was employed to explore the biological mechanisms underlying these changes. ResultsThe findings demonstrated that the HOT_PRO group exhibited a significantly improved performance in the rotarod test, with a longer retention time compared to both the HOT_MIX and HOT_CHO groups (P<0.05). Additionally, this group showed significantly reduced levels of muscle damage markers such as LDH and CK, indicating that the carbohydrate-later intake strategy helped alleviate exercise-induced muscle injury. Metabolomic profiling of the HOT_PRO group showed marked increases in alanine, creatine, and flavin adenine dinucleotide (FAD), indicating shifts in amino acid metabolism and oxidative metabolism. Conversely, metabolites such as spermidine, cholesterol sulfate, cholesterol, and serine were significantly reduced in the HOT_PRO group, pointing to alterations in lipid and sterol metabolism. Further analysis of the differential metabolites revealed that these changes were primarily associated with key metabolic pathways, including glycine-serine-threonine metabolism, primary bile acid biosynthesis, taurine and hypotaurine metabolism, and steroid hormone biosynthesis. These pathways are essential for energy production, antioxidant defense, and muscle recovery, suggesting that the carbohydrate-later feeding strategy may promote metabolic homeostasis and improve exercise recovery by enhancing these critical metabolic processes. ConclusionThe results of this study support the hypothesis that consuming carbohydrates after proteins and fats during exercise recovery enhances metabolic homeostasis and accelerates recovery under heat stress. This strategy effectively modulates energy, amino acid, and lipid-related pathways, which are crucial for improving endurance performance and mitigating fatigue in high-temperature environments. The findings suggest that carbohydrate-later intake could be a promising nutritional strategy for athletes and individuals exposed to heat during physical activity. Furthermore, the study provides valuable insights into how different nutrient timing strategies can impact exercise recovery and metabolic regulation, paving the way for more personalized and effective nutritional interventions in extreme environmental conditions.
4.The Mesencephalic Locomotor Region for Locomotion Control
Xing-Chen GUO ; Yan XIE ; Xin-Shuo WEI ; Wen-Fen LI ; Ying-Yu SUN
Progress in Biochemistry and Biophysics 2025;52(7):1804-1816
Locomotion, a fundamental motor function encompassing various forms such as swimming, walking, running, and flying, is essential for animal survival and adaptation. The mesencephalic locomotor region (MLR), located at the midbrain-hindbrain junction, is a conserved brain area critical for controlling locomotion. This review highlights recent advances in understanding the MLR’s structure and function across species, from lampreys to mammals and birds, with a particular focus on insights gained from optogenetic studies in mammals. The goal is to uncover universal strategies for MLR-mediated locomotor control. Electrical stimulation of the MLR in species such as lampreys, salamanders, cats, and mice initiates locomotion and modulates speed and patterns. For example, in lampreys, MLR stimulation induces swimming, with increased intensity or frequency enhancing propulsive force. Similarly, in salamanders, graded stimulation transitions locomotor outputs from walking to swimming. Histochemical studies reveal that effective MLR stimulation sites colocalize with cholinergic neurons, suggesting a conserved neurochemical basis for locomotion control. In mammals, the MLR comprises two key nuclei: the cuneiform nucleus (CnF) and the pedunculopontine nucleus (PPN). Both nuclei contain glutamatergic and GABAergic neurons, with the PPN additionally housing cholinergic neurons. Optogenetic studies in mice by selectively activating glutamatergic neurons have demonstrated that the CnF and PPN play distinct roles in motor control: the CnF drives rapid escape behaviors, while the PPN regulates slower, exploratory movements. This functional specialization within the MLR allows animals to adapt their locomotion patterns and speed in response to environmental demands and behavioral objectives. Similar to findings in lampreys, the CnF and PPN in mice transmit motor commands to spinal effector circuits by modulating the activity of brainstem reticular formation neurons. However, they achieve this through distinct reticulospinal pathways, enabling the generation of specific behaviors. Further insights from monosynaptic rabies viral tracing reveal that the CnF and PPN integrate inputs from diverse brain regions to produce context-appropriate behaviors. For instance, glutamatergic neurons in the PPN receive signals from other midbrain structures, the basal ganglia, and medullary nuclei, whereas glutamatergic neurons in the CnF rarely receive inputs from the basal ganglia but instead are strongly influenced by the periaqueductal grey and inferior colliculus within the midbrain. These differential connectivity patterns underscore the specialized roles of the CnF and PPN in motor control, highlighting their unique contributions to coordinating locomotion. Birds exhibit exceptional flight capabilities, yet the avian MLR remains poorly understood. Comparative studies suggest that the pedunculopontine tegmental nucleus (PPTg) in birds is homologous to the mammalian PPN, which contains cholinergic neurons, while the intercollicular nucleus (ICo) or nucleus isthmi pars magnocellularis (ImC) may correspond to the CnF. These findings provide important clues for identifying the avian MLR and elucidating its role in flight control. However, functional validation through targeted experiments is urgently needed to confirm these hypotheses. Optogenetics and other advanced techniques in mice have greatly advanced MLR research, enabling precise manipulation of specific neuronal populations. Future studies should extend these methods to other species, particularly birds, to explore unique locomotor adaptations. Comparative analyses of MLR structure and function across species will deepen our understanding of the conserved and evolved features of motor control, revealing fundamental principles of locomotion regulation throughout evolution. By integrating findings from diverse species, we can uncover how the MLR has been adapted to meet the locomotor demands of different environments, from aquatic to aerial habitats.
5.Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma
Hang LIU ; Yu-Xin ZHU ; Si-Lin GUO ; Xin-Yun PAN ; Yuan-Jie XIE ; Si-Cong LIAO ; Xin-Wen DAI ; Ping SHEN ; Yu-Bo XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2376-2392
ObjectiveTraditional Chinese medicine (TCM) constitutes a valuable cultural heritage and an important source of antitumor compounds. Poria (Poria cocos (Schw.) Wolf), the dried sclerotium of a polyporaceae fungus, was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia. Traditionally recognized for its diuretic, spleen-tonifying, and sedative properties, modern pharmacological studies confirm that Poria exhibits antioxidant, anti-inflammatory, antibacterial, and antitumor activities. Pachymic acid (PA; a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid), isolated from Poria, is a principal bioactive constituent. Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms, though these remain incompletely characterized. Neuroblastoma (NB), a highly malignant pediatric extracranial solid tumor accounting for 15% of childhood cancer deaths, urgently requires safer therapeutics due to the limitations of current treatments. Although PA shows multi-mechanistic antitumor potential, its efficacy against NB remains uncharacterized. This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking, dynamic simulations, and in vitro assays, aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays. MethodsThis study employed network pharmacology to identify potential targets of PA in NB, followed by validation using molecular docking, molecular dynamics (MD) simulations, MM/PBSA free energy analysis, RT-qPCR and Western blot experiments. Network pharmacology analysis included target screening via TCMSP, GeneCards, DisGeNET, SwissTargetPrediction, SuperPred, and PharmMapper. Subsequently, potential targets were predicted by intersecting the results from these databases via Venn analysis. Following target prediction, topological analysis was performed to identify key targets using Cytoscape software. Molecular docking was conducted using AutoDock Vina, with the binding pocket defined based on crystal structures. MD simulations were performed for 100 ns using GROMACS, and RMSD, RMSF, SASA, and hydrogen bonding dynamics were analyzed. MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex. In vitro validation included RT-qPCR and Western blot, with GAPDH used as an internal control. ResultsThe CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability. GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress, vesicle lumen, and protein tyrosine kinase activity. KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT, MAPK, and Ras signaling pathways. Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1, EGFR, SRC, and HSP90AA1. RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1, EGFR, and SRC while increasing the HSP90AA1 mRNA and protein levels. ConclusionIt was suggested that PA may exert its anti-NB effects by inhibiting AKT1, EGFR, and SRC expression, potentially modulating the PI3K/AKT signaling pathway. These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.
6. Benzyl isothiocyanate induces cell cycle arrest and apoptosis in cervical cancer through activation of p53 and AMPK-FOXO1a signaling pathways
Tamasha KURMANJIANG ; Xiao-Jing WANG ; Xin-Yi LI ; Hao WANG ; Guo-Xuan XIE ; Yun-Jie CHEN ; Ting WEN ; Xi-Lu CHENG ; Nuraminai MAIMAITI ; Jin-Yu LI
Chinese Pharmacological Bulletin 2024;40(1):114-158
Aim To investigate the effect of benzyl iso-thiocyanate (BITC) on the proliferation of mouse U14 cervical cancer cells and to explore the mechanism of cytotoxicity based on transcriptomic data analysis. Methods The effect of BITC on U14 cell activity was detected by MTT, nuclear morphological changes were observed by Hochest 33258 and fluorescent inverted microscope, cell cycle and apoptosis were determined by flow cytometry, and the transcriptome database of U14 cells before and after BITC (20 μmol · L
7.Jianwei Xiaozhang Tablets Improves Precancerous Lesions of Gastric Cancer in Rats via Regulating PI3K-Akt-eNOS Pathway
Hai-Yang HUANG ; Shao-Wen ZHONG ; Yun AN ; Yu-Xin WANG ; Shu-Min ZHU ; Jie GAO ; Xiao-Min LU ; Ming-Guo DONG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):709-718
Objective To investigate the therapeutic effect and mechanism of Jianwei Xiaozhang Tablets on rats with precancerous lesions of gastric cancer(PLGC).Methods Forty male SD rats were randomly divided into the normal group,the model group,the folic acid group and the Jianwei Xiaozhang Tablets group,with 10 rats in each group.In addition to the normal group,the other three groups of rats were prepared by gavage with Ranitidine Aqueous Solution combined with N-methyl-N'-nitro-N-nitrosoguanidine(MNNG)solution drinking method for the preparation of PLGC model.After successful modeling,drugs were administered accordingly for 7 weeks.The changes in body mass of rats during modeling and drug administration were recorded,the gross view of the stomach was observed and scored pathologically,the coefficients of spleen and liver were determined,the pathological changes in gastric tissue were observed by hematoxylin-eosin(HE)staining,enzyme-linked immunosorbent assay(ELISA)was used to measure serum gastrin(GAS),motilin(MTL)and glucagon(GC),Alisin Blue-Periodic Acid Schiff's(AB-PAS)staining was used to observe the thickness of the mucosal layer of gastric tissues,the expressions of phosphatidylinositol 3-kinase(PI3K),phosphorylated PI3K(p-PI3K),protein kinase B(Akt),phosphorylated Akt(p-Akt),and endothelial-type nitric oxide synthase(eNOS)proteins in gastric tissues were detected by protein immunoblotting(Western Blot),and the expression of vascular endothelial growth factor A(VEGFA)protein in gastric tissues was detected by immunofluorescence staining.Results Compared with the normal group,the body mass of rats in the model group grew slowly during the experimental period,gastric macroscopic pathological scores were significantly increased(P<0.01),splenic coefficient and hepatic coefficient were significantly decreased(P<0.01),the gastric tissues showed cuprocyte hyperplasia and intestinal chemotaxis,gastric tissues'inflammation scores were significantly increased(P<0.01),the serum GAS content was significantly increased(P<0.01),and the MTL,GC contents were significantly reduced(P<0.05),and the thickness of the mucous membrane layer of gastric tissue was significantly reduced(P<0.05),the protein expression levels of PI3K,p-PI3K,Akt,p-Akt and eNOS were reduced(P<0.01),and the protein expression level of VEGFA was reduced(P<0.01);compared with the model group,the above indexes of the Jianwei Xiaozhang Tablets group and the folic acid group were all significantly improved(P<0.05 or P<0.01),among which,the Jianwei Xiaozhang Tablets group had a better improvement effect in the proliferation of cup cells and intestinal chemotaxis in gastric tissues,the content of serum GAS,and the thickness of the mucous layer in gastric tissues.Conclusion The mechanism of the improvement of PLGC in rats by Jianwei Xiaozhang Tablets may be related to the activation of the PI3K-Akt-eNOS pathway,which in turn promotes the angiogenesis and repair of gastric damaged tissues.
8.Chemical constituents from the leaves of Cyclocarya paliurus and their α-glucosidase inhibitory activities
Yong YANG ; Ting-Si GUO ; Min XIE ; Li-Hong TAN ; Wen-Chu LI ; Hao ZHENG ; Fei-Bing HUANG ; Yu-Pei YANG ; Wei WANG ; Yu-Qing JIAN
Chinese Traditional Patent Medicine 2024;46(3):834-842
AIM To study the chemical constituents from the leaves of Cyanocarya paliurus(Batalin)Iljinskaja and their α-glucosidase inhibitory activities.METHODS The 95%ethanol extract from the leaves of C.paliurus was isolated and purified by macroporous resin,silica gel,Sephadex LH-20,polyamide,C18 reversed-phase silica gel and semi-preparative HPLC,then the structures of obtained compounds were identified by physicochemical properties and spectral data.Their α-glucosidase inhibitory activities were evaluated by PNPG.RESULTS Fifteen compounds were isolated and identified as cyclopaloside C(1),cyclopaloside A(2),juglanosides E(3),vaccinin A(4),ent-murin A(5),kaempferol 3-O-α-L-rhamnopyranoside(6),kaempferol-3-O-β-D-glucopyranoside(7),kaempferol-3-O-β-D-glucuronide methyl ester(8),kaempferol-3-O-β-D-glucuronide ethyl ester(9),kaempferol-3-O-β-D-glucuronide butyl ester(10),quercetin-3-O-α-L-rhamnopyranoside(11)quercetin-3-O-β-D-glucopyranoside(12),quercetin-3-O-β-D-galactopyranoside(13),quercetin-3-O-β-D-glucuronide butyl ester(14),dihydrokaempferol(15).The IC50 value of total extracts ihibited α-glucosidase was(1.83±0.04)μg/mL,and the IC50 values of compounds 1,4-5 were(29.48±1.86),(0.50±0.07),(0.71±0.07)μmol/L,respectively.CONCLUSION Compound 1 is a new tetrahydronaphthalene glycoside.Compounds 4-5,8-10 and 14 are isolated from the leaves of C.paliurus for the first time.Compounds 4-5 are relatively rare flavonoid lignans with potential inhibitory activities against α-glucosidase.
9.Characterization of Schiff Base Modified MCM-41 Molecular Sieve for Adsorption of Lead Ions from Aqueous Solution
Hong-Mei WU ; Jing-Wen XU ; Yu GUO ; Zhen-Bin ZHANG
Chinese Journal of Analytical Chemistry 2024;52(1):102-112
A new Schiff base modified MCM-41 molecular sieve(N-MCM-41)was synthesized via post-grafting method with 2-pyridine formaldehyde for efficient removal of lead ions(Pb2+)from aqueous solution.X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),Fourier transform-infrared(FT-IR)spectroscopy,thermogravimetric analysis(TGA),and X-ray photoelectron spectroscopy(XPS)were employed to characterize the structure,morphology,surface functional groups and chemical states of N-MCM-41.Moreover,the adsorption behavior of Pb2+by N-MCM-41 was systematically studied.Batch adsorption studies revealed that N-MCM-41 showed the maximal adsorption capacity of 101.3 mg/g at 45℃and pH=5.5 under the initial Pb2+ concentration of 80 mg/L after 180 min adsorption.The adsorption process conformed to the Langmuir isotherm model and the pseudo-second-order kinetics model.The adsorption of Pb2+by N-MCM-41 was a spontaneous and endothermic process.Adsorption mechanism analyses suggested that functional groups on N-MCM-41 had strong coordination ability with Pb2+to improve the adsorption capacity.The synthesized N-MCM-41 adsorbent exhibited excellent reusability in five regeneration cycles.Overall,this study showed that the N-MCM-41 had good application prospect to remove Pb2+ from aqueous solution.
10.Antipyretic and anti-inflammatory effects and quality evaluation of a new type of Lonicera Japonicae Flos granule raw decoction piece
Zhi-jun GUO ; Meng-meng HOU ; Dan GAO ; Yu-han WU ; Ze-min YANG ; Jia-lu WANG ; Bo GAO ; Xi-wen LI
Acta Pharmaceutica Sinica 2024;59(7):2087-2097
Traditional decoction pieces have low efficiency, poor batch-to-batch consistency, and irregular physical form, making it difficult to meet the demands of modern automated production and precise and rapid clinical blending. Therefore, this study aims to develop a new type of granular drinking tablet to meet the demand for high-quality development in the traditional Chinese medicine industry. In the current study, the differences and similarities between the new Lonicerae Japonicae Flos (LJF) granular drinking tablets and the traditional ones were evaluated based on the flowability, the paste rate of the standard soup, the characterization fingerprint, the degree of pasting, the content of active ingredients, the transfer rate, and its traditional antipyretic and anti-inflammatory efficacy, using the traditional


Result Analysis
Print
Save
E-mail