1.A Fitting Method for Photoacoustic Pump-probe Imaging Based on Phase Correction
Zhuo-Jun XIE ; Hong-Wen ZHONG ; Run-Xiang LIU ; Bo WANG ; Ping XUE ; Bin HE
Progress in Biochemistry and Biophysics 2025;52(2):525-532
ObjectivePhotoacoustic pump-probe imaging can effectively eliminate the interference of blood background signal in traditional photoacoustic imaging, and realize the imaging of weak phosphorescence molecules and their triplet lifetimes in deep tissues. However, background differential noise in photoacoustic pump-probe imaging often leads to large fitting results of phosphorescent molecule concentration and triplet lifetime. Therefore, this paper proposes a novel triplet lifetime fitting method for photoacoustic pump-probe imaging. By extracting the phase of the triplet differential signal and the background noise, the fitting bias caused by the background noise can be effectively corrected. MethodsThe advantages and feasibility of the proposed algorithm are verified by numerical simulation, phantom and in vivo experiments, respectively. ResultsIn the numerical simulation, under the condition of noise intensity being 10% of the signal amplitude, the new method can optimize the fitting deviation from 48.5% to about 5%, and has a higher exclusion coefficient (0.88>0.79), which greatly improves the fitting accuracy. The high specificity imaging ability of photoacoustic pump imaging for phosphorescent molecules has been demonstrated by phantom experiments. In vivo experiments have verified the feasibility of the new fitting method proposed in this paper for fitting phosphoometric lifetime to monitor oxygen partial pressure content during photodynamic therapy of tumors in nude mice. ConclusionThis work will play an important role in promoting the application of photoacoustic pump-probe imaging in biomedicine.
2.Programmed Cell Death in Endometriosis and Traditional Chinese Medicine Intervention: A Review
Zuoliang ZHANG ; Wanrun WANG ; Wen LI ; Xue HAN ; Xiaohong CHEN ; Nan SU ; Huiling LIU ; Quansheng WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):48-57
Endometriosis (EMT) is a common disease with frequent occurrence and difficult to be cured in modern clinical practice of obstetrics and gynaecology. It is characterized by progressively worsening dysmenorrhoea, pelvic mass, and infertility. The incidence of EMT is growing and increasingly younger patients are diagnosed with this disease, which poses a serious threat to the reproductive and psychological health of women of childbearing age and adolescent females. However, the pathogenesis of EMT is still not completely clear, and the disease has a long course. Therefore, developing new therapies is an urgent clinical problem to be solved. Great progress has been achieved in the treatment of EMT with traditional Chinese medicine (TCM), while the underlying mechanism remains in exploration. Programmed cell death (PCD) is a cell death mode mediated by a variety of bio-molecules with specific signaling cascades. The known PCD processes include apoptosis, pyroptosis, autophagy, ferroptosis, and cuproptosis, which all play a pivotal role in the development of EMT. Researchers have made achievements in the treatment of EMT with TCM, which regulates PCD via multiple pathways, routes, targets, and mechanisms. However, the progress in the regulation of PCD in the treatment of EMT with TCM remains to be reviewed. This paper reviews the research progress in the treatment of EMT with TCM from five PCD processes (apoptosis, pyroptosis, autophagy, ferroptosis, and cuproptosis), with the aim of providing a theoretical basis for the clinical prevention and treatment of EMT.
3.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
4.Protective value of radiation protection safety education for patients with differentiated thyroid carcinoma treated with iodine-131
Wen WANG ; Aomei ZHAO ; Hongmei LIANG ; Jie BAI ; Qi WANG ; Yiqian LIANG ; Jianjun XUE
China Occupational Medicine 2025;52(3):313-317
Objective To evaluate the protective effect of radiation protection safety education (RPSE) on patients with differentiated thyroid carcinoma (DTC) undergoing iodine-131 (131I) treatment. Methods The DTC patients who undergo 131I treatment were divided into the control group and the RPSE group using the convenience sampling method, with 142 patients in each group. Patients in the control group received routine health education, while the RPSE group received routine health education combined with RPSE. Dose equivalent rate (DER) on pillows, bed sheets, quilt covers, and household waste of patients were compared between the two groups upon discharge. Results The median (M) DERs of patients' pillows, bed sheets, quilt covers and household waste were 3.86, 3.63, 3.91 and 56.59 times higher in the control group compared with the environmental background level, respectively. The M DERs of patients' pillows, bed sheets, quilt covers were 2.23, 2.18, and 2.55 times higher in the RPSE group compared with the environmental background level, while the M DER of household waste was equivalent to the environmental background level. The DERs of patients' pillows, bed sheets, quilt covers, and household waste in the RPSE group were significantly lower than those in the control group (all P<0.001). The DERs of the above four items were lower in both male and female patients in RPSE group compared with same-gender patients in the control group (all P<0.001). The patients' DERs of the above indicators had no significant difference among different gender in both control group and RPSE group (all P>0.05), except for higher DER of household waste in female patients than that of male patients in the control group (P<0.05). There were no significant differences in the DERs of pillows, bed sheets, quilt covers, and household waste across subgroups, where patients received different treatment doses, of both the control group and the RPSE group (all P>0.05). Conclusion RPSE for DTC patients treated with 131I, reduces the DERs of pillows, bed sheets, quilt covers, and particularly household waste.
5.Predicting the Risk of Arterial Stiffness in Coal Miners Based on Different Machine Learning Models.
Qian Wei CHEN ; Xue Zan HUANG ; Yu DING ; Feng Ren ZHU ; Jia WANG ; Yuan Jie ZOU ; Yuan Zhen DU ; Ya Jun ZHANG ; Zi Wen HUI ; Feng Lin ZHU ; Min MU
Biomedical and Environmental Sciences 2024;37(1):108-111
6. Study on mechanism of hydroxy-a-sanshool on diabetic cardiomyopathy based on proteomics
Xue WANG ; Shuo HUANG ; Ling YANG ; Wen-Jing XIAO ; Yong-He HU
Chinese Pharmacological Bulletin 2024;40(3):537-544
Aim To explore the mechanism of hydroxy-a-sanshool in the treatment of diabetic cardiomyopathy ( DCM) based on label-free quantitative proteomics detection technique. Methods DCM model was established by high fat diet and intraperitoneal injection of streptozotocin ( STZ) . They were divided into control group ( CON group ) , diabetic cardiomyopathy group (DCM group) and hydroxy-a-sanshool treatment group ( DCM + SAN group) . The cardiac function of mice was evaluated by echocardiography, the myocardial morphology was observed by pathology staining, the protective mechanism of hydroxy-a-sanshool on diabetic cardiomyopathy was speculated by proteomic technique , and the expression level of cAMP/PKA signaling pathway and key proteins were verified by Western blotting. Results Cardiac ultrasound and pathology staining showed that hydroxy-a-sanshool had protective effect on the heart of DCM mice. Label-free quantitative proteomic analysis was carried out between DCM + SAN group and DCM group, and 160 differential pro-teins were identified by proteomics, in which 127 proteins were up-regulated and 33 proteins were down regulated ; GO secondary functional annotations showed the biological process, molecular function and cellular component; KEGG enrichment analysis showed that cAMP signaling pathway was the most abundant; protein interaction network showed that PKA as the central node interacted with many proteins in the cAMP signaling pathway. Western blot showed that the relative expression of с AMP, PKA protein in DCM group was significantly lower than that in CON group ( P < 0. 05 ) , while the relative expression of cAMP, PKA protein in DCM + SAN group was significantly higher than that in DCM group ( P < 0. 05 ) . Conclusions Hydroxy-a-sanshool has protective effect on heart function of mice with diabetes, which plays a role through cAMP signaling pathway.
7.Based on the interaction between supramolecules of traditional Chinese medicine and enterobacteria to explore the material basis of combination of Rhei Radix et Rhizoma - Coptidis Rhizoma
Xiao-yu LIN ; Ji-hui LU ; Yao-zhi ZHANG ; Wen-min PI ; Zhi-jia WANG ; Lin-ying WU ; Xue-mei HUANG ; Peng-long WANG
Acta Pharmaceutica Sinica 2024;59(2):464-475
Based on the interaction between supramolecule of traditional Chinese medicine and enterobacteria, the material basis of
8.Determination of Isobutyl Chloroformate Residue in Agatroban by Derivatization-Gas Chromatography-Mass Spectrometry
Chong QIAN ; Bo-Kai MA ; Chuang NIU ; Shan-Shan LIU ; Wen-Wen HUANG ; Xin-Lei GOU ; Wei WANG ; Mei ZHANG ; Xue-Li CAO
Chinese Journal of Analytical Chemistry 2024;52(1):113-120
A derivatizaton method combined with gas chromatography-mass spectrometry(GC-MS)was established for detection of isobutyl chloroformate(IBCF)residue in active pharmaceutical ingredient of agatroban.The extraction and derivatization reagents,derivatization time,qualitative and quantitative ions were selected and optimized,respectively.The possible mechanism of derivatization and characteristic fragment ions fragmentation were speculated.The agatroban samples were dissolved and extracted by methanol,and the residual IBCF was derived with methanol to generate methyl isobutyl carbonate(MIBCB).After 24 h static derivatization at room temperature,IBCF was completely transformed into MIBCB,which could be used to indirectly detect IBCF accurately.The results showed that the linearity of this method was good in the range of 25-500 ng/mL(R2=0.9999).The limit of detection(LOD,S/N=3)was 0.75 μg/g,and the limit of quantification(LOQ,S/N=10)was 2.50 μg/g.Good recoveries(95.2%-97.8%)and relative standard deviations(RSDs)less than 3.1%(n=6)were obtained from agatroban samples at three spiked levels of IBCF(2.50,25.00,50.00 μg/g),which showed good accuracy of this method.Good precision of detection results was obtained by different laboratory technicians at different times,the mean value of spiked sample solution(25.00 μg/g)was 24.28 μg/g,and the RSD was 2.1%(n=12).The durability was good,minor changes of detection conditions had little effect on the results.Under the original condition and conditions with initial column temperature±5℃,heating rate±2℃/min,column flow rate±0.1 mL/min,the IBCF content of spiked sample solution(25.00 μg/g)was detected,the mean value of detection results was 24.16 μg/g,and the RSD was 2.2%(n=7).Eight batches of agatroban samples from two manufacturers were detected using the established method,and the results showed that no IBCF residue was detected in any of these samples.The agatroban samples could be dissolved by methanol,and then the IBCF residue could be simultaneously extracted and derived with methanol as well.This detection method had the advantages of simple operation,high sensitivity,low matrix effect and accurate quantification,which provided a new effective method for detection of IBCF residue in agatroban.
9.Mechanism studies underlying the alleviatory effects of isoliquiritigenin on abnormal glucolipid metabolism triggered by type 2 diabetes
Zi-yi CHEN ; Xiao-xue YANG ; Wen-wen DING ; Dou-dou WANG ; Ping HE ; Ying LIU
Acta Pharmaceutica Sinica 2024;59(1):105-118
Isoliquiritigenin (ISL) is an active chalcone compound isolated from licorice. It possesses anti-inflammatory and anti-oxidative activities. In our previous study, we uncovered a great potential of ISL in treatment of type 2 diabetes mellitus (T2DM). Therefore, this study aims to reveal the mechanism underlying the alleviatory effects of ISL on T2DM-induced glycolipid metabolism disorder. High-fat-high-sugar diet (HFD) combined with intraperitoneal injection of streptozotocin (STZ) were used to establish T2DM mice model. All animal experiments were carried out with approval of the Committee of Ethics at Beijing University of Chinese Medicine. HepG2 cells were used in
10.Long non-coding RNA AW112010 improves insulin resistance in adipocytes of aging mice through the miR-204/POU2F2 axis
Rui WANG ; Shuwen WANG ; Yifan ZHANG ; Yaqi HU ; Qi YUAN ; Yuan WEN ; Xiaoling CHEN ; Ting LU ; Ying ZHENG ; Zhiyong LIN ; Mengzhen XUE ; Yaqi WANG ; Fangqi XIA ; Leiqi ZHU ; Chengfu YUAN
Chinese Journal of Endocrinology and Metabolism 2024;40(1):44-52
Objective:To investigate whether long non-coding RNA(lncRNA) AW112010 can improve insulin resistance in aging adipocytes through the miR-204/POU2F2 signaling pathway.Methods:In vivo experiment: C57BL/6 mice were divided into young control group(4 months old) and aging model group(18 months old) based on body weight. The expression levels of AW112010, miR-204-5p, POU2F2, aging related indicators(p16, p21), and insulin signaling pathway genes [insulin receptor(INSR), insulin receptor substrate 1(IRS1), phosphatidylinositol kinase(PI3K), protein kinase B(AKT)] in epididymal adipose tissue were detected using real-time fluorescence quantitative PCR(RT-qPCR) and Western blotting. In vitro experiment: Using adriamycin(ADR) to induce 3T3-L1 aging adipocyte model, β-gal staining was used to observe cellular senescence, and miR-204 inhibitor and miR-204 mimic small interfering RNA were successfully constructed and transfected into 3T3-L1 adipocytes. Results:RT-qPCR and Western blot results showed that compared with the young group, the expression of AW112010 in the adipose tissue of aging mice was increased, while the expression of miR-204-5p was decreased. The expressions of POU2F2, p16, and p21 in the adipose tissue of aging mice were increased, while the expressions of INSR, IRS1, PI3K, GLUT4 mRNA and protein were decreased. The β-gal stainging results showed that the number of 3T3-L1 senescent adipocytes induced by ADR was significantly increased, and the expression levels of AW112010, POU2F2, p16, and p21 in ADR-induced senescent adipocytes were increased compared with the control group, while the expression levels of miR-204-5p, INSR, IRS1, PI3K, GLUT4 were decreased, and remaining glucose in the culture medium was increased. Compared with control, overexpression of miR-204 resulted in decreased expressions of aging indicators p16, p21, and target gene POU2F2 while the expressions of INSR and GLUT4 were increased.Conclusion:Upregulation of lncRNA AW112010 in adipocytes of aging mice may induce insulin resistance by targeting miR-204-5p/POU2F2/IRS1.

Result Analysis
Print
Save
E-mail