1.Mitochondrial Oxidative Stress Enhances Vasoconstriction by Altering Calcium Homeostasis in Cerebrovascular Smooth Muscle Cells under Simulated Microgravity.
Zi Fan LIU ; Hai Ming WANG ; Min JIANG ; Lin WANG ; Le Jian LIN ; Yun Zhang ZHAO ; Jun Jie SHAO ; Jing Jing ZHOU ; Man Jiang XIE ; Xin LI ; Ran ZHANG
Biomedical and Environmental Sciences 2021;34(3):203-212
		                        		
		                        			Objective:
		                        			Exposure to microgravity results in postflight cardiovascular deconditioning in astronauts. Vascular oxidative stress injury and mitochondrial dysfunction have been reported during this process. To elucidate the mechanism for this condition, we investigated whether mitochondrial oxidative stress regulates calcium homeostasis and vasoconstriction in hindlimb unweighted (HU) rat cerebral arteries.
		                        		
		                        			Methods:
		                        			Three-week HU was used to simulate microgravity in rats. The contractile responses to vasoconstrictors, mitochondrial fission/fusion, Ca 
		                        		
		                        			Results:
		                        			An increase of cytoplasmic Ca 
		                        		
		                        			Conclusion
		                        			The present results suggest that mitochondrial oxidative stress enhances cerebral vasoconstriction by regulating calcium homeostasis during simulated microgravity.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Calcium/metabolism*
		                        			;
		                        		
		                        			Cerebral Arteries
		                        			;
		                        		
		                        			Homeostasis
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mitochondria/physiology*
		                        			;
		                        		
		                        			Myocytes, Smooth Muscle/physiology*
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Vasoconstriction/physiology*
		                        			;
		                        		
		                        			Weightlessness Simulation
		                        			
		                        		
		                        	
2.Collagen Peptides Improve Lymphocyte Distribution in Peripheral Blood and T Lymphocyte Proliferation in Spleen of Mice under the Condition of Simulated Weightlessness.
Shao-Yan SI ; Bing-Xin XU ; Ying-Ying WU ; Ya-Ya QIN ; Ran DUAN ; Shu-Jun SONG
Journal of Experimental Hematology 2020;28(3):1001-1005
		                        		
		                        			OBJECTIVE:
		                        			To investigate whether collagen peptides can improve the immune functions of mice under the condition of simulated weightlessness.
		                        		
		                        			METHODS:
		                        			Mouse tail-suspension model was used to simulate the effects of weightlessness. Tail-suspended mice were intraperitoneally injected with 600 mg collagen peptides per kilogram body weight once a day for 10 days. Then, the mice were killed, and white blood cells were counted and classified. Lymphocyte subsets and T lymphocyte proliferations in spleens were analyzed.
		                        		
		                        			RESULTS:
		                        			Compared with normal control group, total and differential count of leukocytes, lymphocytes, T cells,CD4 and CD8 T cells, B cells and NK cells, and splenic T lymphocyte proliferation all decreased in the weightlessness simulated mice (P<0.05). Except for NK cells, the above-mentioned parameters were increased after administration of collagen peptides, and some of the parameters were recovered to the levels of normal control mice (P<0.05).
		                        		
		                        			CONCLUSION
		                        			Collagen peptides can effectively improve peripheral blood lymphocyte distributions and T lymphocyte proliferations of mice under the condition of simulated weightlessness. This study nay provid the experimental basis for improvement of immune functions of astronauts.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			CD8-Positive T-Lymphocytes
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Collagen
		                        			;
		                        		
		                        			Lymphocyte Count
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Peptides
		                        			;
		                        		
		                        			Spleen
		                        			;
		                        		
		                        			Weightlessness
		                        			;
		                        		
		                        			Weightlessness Simulation
		                        			
		                        		
		                        	
3.Physiological effects of weightlessness: countermeasure system development for a long-term Chinese manned spaceflight.
Linjie WANG ; Zhili LI ; Cheng TAN ; Shujuan LIU ; Jianfeng ZHANG ; Siyang HE ; Peng ZOU ; Weibo LIU ; Yinghui LI
Frontiers of Medicine 2019;13(2):202-212
		                        		
		                        			
		                        			The Chinese space station will be built around 2020. As a national space laboratory, it will offer unique opportunities for studying the physiological effects of weightlessness and the efficacy of the countermeasures against such effects. In this paper, we described the development of countermeasure systems in the Chinese space program. To emphasize the need of the Chinese space program to implement its own program for developing countermeasures, we reviewed the literature on the negative physiological effects of weightlessness, the challenges of completing missions, the development of countermeasure devices, the establishment of countermeasure programs, and the efficacy of the countermeasure techniques in American and Russian manned spaceflights. In addition, a brief overview was provided on the Chinese research and development on countermeasures to discuss the current status and goals of the development of countermeasures against physiological problems associated with weightlessness.
		                        		
		                        		
		                        		
		                        			China
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Program Evaluation
		                        			;
		                        		
		                        			Space Flight
		                        			;
		                        		
		                        			Weightlessness
		                        			;
		                        		
		                        			Weightlessness Simulation
		                        			
		                        		
		                        	
4.The Impacts of Simulated Microgravity on Rat Brain Depended on Durations and Regions.
Bo CHEN ; Yu Shi ZHANG ; George LI ; Jun-Lae CHO ; Yu Lin DENG ; Yu Juan LI
Biomedical and Environmental Sciences 2019;32(7):496-507
		                        		
		                        			OBJECTIVE:
		                        			To explore the dynamic impacts of simulated microgravity (SM) on different vital brain regions of rats.
		                        		
		                        			METHODS:
		                        			Microgravity was simulated for 7 and 21 days, respectively, using the tail-suspension rat model. Histomorphology, oxidative stress, inflammatory cytokines and the expression of some key proteins were determined in hippocampus, cerebral cortex and striatum.
		                        		
		                        			RESULTS:
		                        			21-day SM decreased brain derived neurotrophic factor and induced neuron atrophy in the cerebral cortex. Strong oxidative stress was triggered at day 7 and the oxidative status returned to physiological level at day 21. Inflammatory cytokines were gradually suppressed and in striatum, the suppression was regulated partially through c-Jun/c-Fos.
		                        		
		                        			CONCLUSION
		                        			The results revealed that the significant impacts of SM on rat brain tissue depended on durations and regions, which might help to understand the health risk and to prevent brain damage for astronauts in space travel.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Brain
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Brain-Derived Neurotrophic Factor
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cytokines
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-fos
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-jun
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Random Allocation
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Weightlessness Simulation
		                        			
		                        		
		                        	
5.Different Types of Low-frequency Electromagnetic Fields Resist Bone Loss Caused by Weightlessness.
Wen Yuan LI ; Yong Hui TIAN ; Yu Hai GAO ; Bao Ying ZHU ; Hui Rong XI ; Ke Ming CHEN
Acta Academiae Medicinae Sinicae 2019;41(1):11-20
		                        		
		                        			
		                        			Objective To compare the effects of 50-Hz 0.6-mT low-frequency pulsed electromagnetic fields(PEMFs) and 50-Hz 1.8-mT sinusoidal alternating electromagnetic fields(SEMFs) in preventing bone loss in tail-suspended rats,with an attempt to improve the prevention and treatment of bone loss caused by weightlessness.Methods Tail-suspension rat models were used to simulate microgravity on the ground. Forty rats were randomly divided into four groups[control group,hindlimb-suspended(HLS) group,HLS+PEMFs group,and HLS+SEMFs group],with 10 rats in each group. In the PEMFs treatment group and SEMFs treatment group,the intervention was 90 min per day. Rats were sacrificed after four weeks. Bone mineral density(BMD) of femur and vertebra was measured by dual-energy X-ray absorptiometry and biomechanical strength by AG-IS biomechanical instrument. Serum osteocalcin(OC),tartrate-resistant acid phosphatase 5b(Tracp 5b),parathyroid hormone(PTH),and cyclic adenosine monophosphate(cAMP) were detected by ELISA. The microstructure of bone tissue was observed by Micro-CT and HE staining.Results The BMD of the femur(P=0.000) and vertebrae(P=0.001) in the HLS group was significantly lower than in the control group;the BMD of the femurs(P=0.001) and vertebrae(P=0.039) in the HLS+PEMFs group was significantly higher than in the HLS group;the BMD of the femurs in the HLS+SEMFs group was significantly higher than in the HLS group(P=0.003),but the BMD of the vertebrae showed no significant difference(P=0.130). There was no significant difference in the BMD of the femur(P=0.818) and vertebrae(P=0.614) between the HLS+PEMFs group and the HLS+SEMFs group. The maximum load(P=0.000,P=0.009) and elastic modulus(P=0.015,P=0.009) of the femurs and vertebrae in the HLS group were significantly lower than those in the control group;the maximum load of the femur(P=0.038) and vertebrae(P=0.087) in the HLS+PEMFs group was significantly higher than that in the HLS group,but the elastic modulus was not significantly different from that in the HLS group(P=0.324,P=0.091). The maximum load(P=0.190,P=0.222) and elastic modulus(P=0.512,P=0.437) of femurs and vertebrae in the HLS+SEMFs group were not significantly different from those in the HLS group. There were no significant differences in the maximum load and elastic modulus of femurs(P=0.585,P=0.948) and vertebrae(P=0.668,P=0.349) between the HLS+PEMFs group and the HLS+SEMFs group. The serum OC level in the HLS group was significantly lower than that in the control group(P=0.000),and the OC level in HLS+PEMFs group(P=0.000) and HLS+SEMFs group(P=0.006) were significantly higher than that in the HLS group. The serum Tracp 5b concentration in the HLS group was significantly higher than that in the control group(P=0.011). There was no significant difference between the HLS+PEMFs group(P=0.459) and the HLS+SEMFs group(P=0.469) compared with the control group.Serum Tracp 5b concentrations in the HLS+PEMFs group(P=0.056) and the HLS+SEMFs group(P=0.054) were not significantly different from those in the HLS group. The PTH(P=0.000) and cAMP concentrations(P=0.000) in the HLS group were significantly lower than those in the control group. The PTH(P=0.000,P=0.000) and cAMP concentrations(P=0.000,P=0.000) in the HLS+PEMFs group and the HLS+SEMFs group were significantly higher than in the HLS group. The femoral cancellous bone of the HLS group was very sparse and small compared with the control group. The density and volume of the cancellous bone were similar among the control group,HLS+PEMFs group,and HLS+SEMFs group. Compared with the control group,the HLS group had lower BMD(P=0.000),bone volume (BV)/tissue volume(TV)(P=0.000),number of trabecular bone (Tb.N)(P=0.000),and trabecular thickness(Tb.Th)(P=0.000) and higher trabecular bone dispersion(Tb.Sp)(P=0.000) and bone surface area(BS)/BV(P=0.000). Compared with the HLS group,the HLS+PEMFs group and the HLS+SEMFs group had significantly lower Tb.Sp(P=0.000,P=0.000) and BS/BV(P=0.000,P=0.000) and significantly increased BMD(P=0.000,P=0.000),BV/TV(P=0.001,P=0.004),Tb.Th(P=0.000,P=0.001),and Tb.N(P=0.000,P=0.001). The trabecular thickness significantly differed between the HLS+PEMFs group and the HLS+SEMFs group(P=0.024). The HLS group(P=0.000),HLS+PEMFs group(P=0.000),and HLS+SEMFs group(P=0.000) had the significantly lower osteoblast density on the trabecular bone surface than the control group;however,it was significantly higher in the HLS+SEMFs group(P=0.000) and the HLS+PEMFs group(P=0.000) than in the HLS group. The HLS group had significantly lower density of osteoblasts in the endothelium than the control group(P=0.000);however,the density of osteoblasts was significantly higher in HLS+PEMFs group(P=0.000) and HLS+SEMFs group(P=0.000) than HLS group and was significantly higher in HLS+PEMFs group than in HLS+SEMFs group(P=0.041). Compared with the control group,a large number of fatty cavities were produced in the bone marrow cavity in the HLS group,but the fat globules remarkably decreased in the treatment groups,showing no significant difference from the control group. The number of adipose cells per mm bone marrow in the HLS group was 4 times that of the control group(P=0.000);it was significantly smaller in the HLS+PEMFs group(P=0.000) and HLS+SEMFs group(P=0.000) than in the HLS group,whereas the difference between the HLS+PEMFs group and the HLS+SEMFs group was not statistically significant(P=0.086). Conclusions 50-Hz 0.6-mT PEMFs and 50-Hz 1.8-mT SEMFs can effectively increase bone mineral density and biomechanical values in tail-suspended rats,increase the concentration of bone formation markers in rat blood,activate the cAMP pathway by affecting PTH levels,and thus further increase the content of osteoblasts to prevent the deterioration of bone micro-structure. In particular,PEMFs can prevent the reduction of bone mineral density and maximum load value by about 50% and increase the bone mass of tail-suspended rats by promoting bone formation.
		                        		
		                        		
		                        		
		                        			Absorptiometry, Photon
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bone Density
		                        			;
		                        		
		                        			Electromagnetic Fields
		                        			;
		                        		
		                        			Femur
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Weightlessness
		                        			
		                        		
		                        	
6.Research of simulated microgravity regulate MC3T3-E1 cells differentiation through the nuclear factor-kappa B signaling pathway.
Biao HAN ; Yang ZHANG ; Hao LI ; Shuping WEI ; Ruixin LI ; Xizheng ZHANG
Journal of Biomedical Engineering 2019;36(3):421-427
		                        		
		                        			
		                        			In this study, we aim to investigat the effect of microgravity on osteoblast differentiation in osteoblast-like cells (MC3T3-E1). In addition, we explored the response mechanism of nuclear factor-kappa B (NF-κB) signaling pathway to "zero- " in MC3T3-E1 cells under the simulated microgravity conditions. MC3T3-E1 were cultured in conventional (CON) and simulated microgravity (SMG), respectively. Then, the expression of the related osteoblastic genes and the specific molecules in NF-κB signaling pathway were measured. The results showed that the mRNA and protein levels of alkaline phosphatase (ALP), osteocalcin (OCN) and type Ⅰ collagen (CoL-Ⅰ) were dramatically decreased under the simulated microgravity. Meanwhile, the NF-κB inhibitor α (IκB-α) protein level was decreased and the expressions of phosphorylation of IκB-α (p-IκB-α), p65 and phosphorylation of p65 (p-p65) were significantly up-regulated in SMG group. In addition, the IL-6 content in SMG group was increased compared to CON. These results indicated that simulated microgravity could activate the NF-κB pathway to regulate MC3T3-E1 cells differentiation.
		                        		
		                        		
		                        		
		                        			3T3 Cells
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			NF-kappa B
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Osteoblasts
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Weightlessness Simulation
		                        			
		                        		
		                        	
7.A modified protocol for generating the simulated weightlessness rat model.
Zi Hao FU ; Zhen WANG ; Jie WU ; Hong Yan YANG ; Xing ZHANG ; Feng GAO ; Jia LI
Chinese Journal of Applied Physiology 2019;35(2):189-192
		                        		
		                        			OBJECTIVE:
		                        			To introduce a modified protocol for generating the simulated weightlessness rat model by hindlimb unloading.
		                        		
		                        			METHODS:
		                        			Ninety male adult SD rats were randomly divided into three groups: the control group, classical suspension group and modified suspension group (n=30/group). In the classical suspension group, a strip of medical adhesive tape was attached to the tail, with horizontal filament tape wrapping. A piece of gauze was wrapped around the tail at the outermost layer and the tail was suspended for hindlimb unloading. In the modified suspension group, a layer of plastic net was added between the horizontal filament tape and the gauze to reduce the squeeze on the tail as a buffer zone and ensure proper circulation of the tail. After 4 weeks of suspension, damage to the tail and sheath detachment were observed. Meanwhile the body weight and right soleus wet weight of rats were measured.
		                        		
		                        			RESULTS:
		                        			The ratio of right soleus wet weight to body weight was decreased significantly in both the classical suspension group and the modified suspension group compared with the control group, while there was no difference in body weight among the three different groups. Importantly, the incidence of tail ischemia and necrosis (13.3% vs 40.0% in the classical suspension group) and the incidence of sheath detachment from tail (3.3% vs 26.7% in the classical suspension group) were significantly lower whereas the success rates of model (33.3% vs 83.3% in classical suspension group) was significantly higher in the modified suspension group.
		                        		
		                        			CONCLUSION
		                        			The modified protocol decreases the incidence of tail necrosis and sheath detachment in the rat tail suspension and increases the success rate of the hindlimb unloading rat model, with improved simplicity and practicability.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Hindlimb Suspension
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Muscle, Skeletal
		                        			;
		                        		
		                        			Random Allocation
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Weightlessness Simulation
		                        			;
		                        		
		                        			methods
		                        			
		                        		
		                        	
8.Bone Loss Induced by Simulated Microgravity, Ionizing Radiation and/or Ultradian Rhythms in the Hindlimbs of Rats.
Ya Nan ZHANG ; Wen Gui SHI ; He LI ; Jun Rui HUA ; Xiu FENG ; Wen Jun WEI ; Ju Fang WANG ; Jin Peng HE ; Su Wen LEI
Biomedical and Environmental Sciences 2018;31(2):126-135
		                        		
		                        			OBJECTIVE:
		                        			To better understand the pathological causes of bone loss in a space environment, including microgravity, ionizing radiation, and ultradian rhythms.
		                        		
		                        			METHODS:
		                        			Sprague Dawley (SD) rats were randomly divided into a baseline group, a control group, a hindlimb suspension group, a radiation group, a ultradian rhythms group and a combined-three-factor group. After four weeks of hindlimb suspension followed by X-ray exposure and/or ultradian rhythms, biomechanical properties, bone mineral density, histological analysis, microstructure parameters, and bone turnover markers were detected to evaluate bone loss in hindlimbs of rats.
		                        		
		                        			RESULTS:
		                        			Simulated microgravity or combined-three factors treatment led to a significant decrease in the biomechanical properties of bones, reduction in bone mineral density, and deterioration of trabecular parameters. Ionizing radiation exposure also showed adverse impact while ultradian rhythms had no significant effect on these outcomes. Decrease in the concentration of the turnover markers bone alkaline phosphatase (bALP), osteocalcin (OCN), and tartrate-resistant acid phosphatase-5b (TRAP-5b) in serum was in line with the changes in trabecular parameters.
		                        		
		                        			CONCLUSION
		                        			Simulated microgravity is the main contributor of bone loss. Radiation also results in deleterious effects but ultradian rhythms has no significant effect. Combined-three factors treatment do not exacerbate bone loss when compared to simulated microgravity treatment alone.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Biomechanical Phenomena
		                        			;
		                        		
		                        			Bone Density
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Bone Resorption
		                        			;
		                        		
		                        			etiology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Femur
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Hindlimb Suspension
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Tibia
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Ultradian Rhythm
		                        			;
		                        		
		                        			Weightlessness Simulation
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			X-Rays
		                        			;
		                        		
		                        			adverse effects
		                        			
		                        		
		                        	
9.Bone Mineral Density and Osteoporotic Vertebral Fractures in Traditional, Unassisted, Free-Diving Women (Haenyeos).
Jun Yeong SEO ; Kee Yong HA ; Young Hoon KIM ; Seong Chan KIM ; Eun Ji YOON ; Hyung Youl PARK
Journal of Korean Medical Science 2018;33(48):e316-
		                        		
		                        			
		                        			BACKGROUND: Water pressure and muscle contraction may influence bone mineral density (BMD) in a positive way. However, divers experience weightlessness, which has a negative effect on BMD. The present study investigated BMD difference in normal controls and woman free-divers with vertebral fracture and with no fracture. METHODS: Between January 2010 and December 2014, traditional woman divers (known as Haenyeo in Korean), and non-diving women were investigated. The study population was divided into osteoporotic vertebral fracture and non-fracture groups. The BMD of the lumbar spine and femoral neck was measured. The radiological parameters for global spinal sagittal balance were measured. RESULTS: Thirty free-diving women and thirty-three non-diving women were enrolled in this study. The mean age of the divers was 72.1 ± 4.7 years and that of the controls was 72.7 ± 4.0 years (P = 0.61). There was no statistical difference in BMD between the divers and controls. In divers, cervical lordosis and pelvic tilt were significantly increased in the fracture subgroup compared to the non-fracture subgroup (P = 0.028 and P = 0.008, respectively). Sagittal vertical axis was statistically significantly correlated with cervical lordosis (Spearman's rho R = 0.41, P = 0.03), and pelvic tilt (Spearman's rho R = 0.46, P = 0.01) in divers. CONCLUSION: BMD did not differ significantly between divers and controls during their postmenopausal period. When osteoporotic spinal fractures develop, compensation mechanisms, such as increased cervical lordosis and pelvic tilt, was more evident in traditional woman divers. This may be due to the superior back muscle strength and spinal mobility of this group of women.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Back Muscles
		                        			;
		                        		
		                        			Bone Density*
		                        			;
		                        		
		                        			Compensation and Redress
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Femur Neck
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lordosis
		                        			;
		                        		
		                        			Muscle Contraction
		                        			;
		                        		
		                        			Osteoporosis
		                        			;
		                        		
		                        			Postmenopause
		                        			;
		                        		
		                        			Spinal Fractures
		                        			;
		                        		
		                        			Spine
		                        			;
		                        		
		                        			Water
		                        			;
		                        		
		                        			Weightlessness
		                        			
		                        		
		                        	
10.The subsequent biological effects of simulated microgravity on endothelial cell growth in HUVECs.
Dan XU ; Yu-Bing GUO ; Min ZHANG ; Ye-Qing SUN
Chinese Journal of Traumatology 2018;21(4):229-237
PURPOSEMicrogravity is known to cause endothelium dysfunction in astronauts returning from spaceflight. We aimed to reveal the regulatory mechanism in alterations of human endothelial cells after simulated microgravity (SMG).
METHODSWe utilized the rotary cell culture system (RCCS-1) to explore the subsequent effects of SMG on human umbilical vein endothelial cells (HUVECs).
RESULTSSMG-treated HUVECs appeared obvious growth inhibition after return to normal gravity, which might be attributed to a set of responses including alteration of cytoskeleton, decreased cell adhesion capacity and increased apoptosis. Expression levels of mTOR and its downstream Apaf-1 were increased during subsequent culturing after SMG. miR-22 was up-regulated and its target genes SRF and LAMC1 were down-regulated at mRNA levels. LAMC1 siRNAs reduced cell adhesion rate and inhibited stress fiber formation while SRF siRNAs caused apoptosis.
CONCLUSIONSMG has the subsequent biological effects on HUVECs, resulting in growth inhibition through mTOR signaling and miR-22-mediated mechanism.
Apoptosis ; Cell Proliferation ; Cells, Cultured ; Human Umbilical Vein Endothelial Cells ; physiology ; Humans ; Laminin ; genetics ; MicroRNAs ; physiology ; Weightlessness Simulation
            
Result Analysis
Print
Save
E-mail