1.Blood management strategy for massive transfusion patients in frigid plateau region
Haiying WANG ; Jinjin ZHANG ; Lili CHEN ; Xiaoli SUN ; Cui WEI ; Yongli HUANG ; Yingchun ZHU ; Chong CHEN ; Yanchao XING
Chinese Journal of Blood Transfusion 2025;38(2):268-273
[Objective] To explore the strategy of blood management in patients with massive transfusion in the frigid plateau region. [Methods] The treatment process of a patient with liver rupture in the frigid plateau region was analyzed, and the blood management strategy of the frigid plateau region was discussed in combination with the difficulties of blood transfusion and literature review. [Results] The preoperative complete blood count (CBC) test results of the patient were as follows: RBC 3.14×1012/L, Hb 106 g/L, HCT 30.40%, PLT 115.00×109/L; coagulation function: PT 18.9 s, FiB 1.31 g/L, DD > 6 μg/mL, FDP 25.86 μg/mL; ultrasound examination and imaging manifestations suggested liver contusion and laceration / intraparenchymal hematoma, splenic contusion and laceration, and massive blood accumulation in the abdominal cavity; it was estimated that the patient's blood loss was ≥ 2 000 mL, and massive blood transfusion was required during the operation; red blood cell components were timely transfused during the operation, and the blood component transfusion was guided according to the patient's CBC and coagulation function test results, providing strong support and guarantee for the successful treatment of the patient. The patient recovered well after the operation, and the CBC test results were as follows: RBC 4.32×1012/L, Hb 144 g/L, HCT 39.50%, PLT 329.00×109/L; coagulation function: APTT 29.3 s, PT 12.1 s, FiB 2.728 g/L, DD>6 μg/mL, FDP 25.86 μg/mL. The patient was discharged after 20 days, and regular follow-up reexamination showed no abnormal results. [Conclusion] Individualized blood management strategy should comprehensively consider the patient’s clinical symptoms, the degree of hemoglobin decline, dynamic coagulation test results and existing treatment conditions. Efficient and reasonable patient blood management strategies can effectively improve the clinical outcomes of massive transfusion patients in the frigid plateau region.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.A network meta-analysis on therapeutic effect of different types of exercise on knee osteoarthritis patients
Jia LI ; Qianru LIU ; Mengnan XING ; Bo CHEN ; Wei JIAO ; Zhaoxiang MENG
Chinese Journal of Tissue Engineering Research 2025;29(3):608-616
OBJECTIVE:The main clinical manifestations of knee osteoarthritis are pain,swelling,stiffness,and limited activity,which have a serious impact on the life of patients.Exercise therapy can effectively improve the related symptoms of patients with knee osteoarthritis.This paper uses the method of network meta-analysis to compare the efficacy of different exercise types in the treatment of knee osteoarthritis. METHODS:CNKI,WanFang,PubMed,Embase,Cochrane Library,Web of Science,Scopus,Ebsco,SinoMed,and UpToDate were searched with Chinese search terms"knee osteoarthritis,exercise therapy"and English search terms"knee osteoarthritis,exercise".Randomized controlled trials on the application of different exercise types in patients with knee osteoarthritis from October 2013 to October 2023 were collected.The outcome measures included visual analog scale,Western Ontario and McMaster Universities Osteoarthritis Index score,Timed Up and Go test,and 36-item short form health survey.Literature quality analysis was performed using the Cochrane Manual recommended tool for risk assessment of bias in randomized controlled trials.Two researchers independently completed the data collection,collation,extraction and analysis.RevMan 5.4 and Stata 18.0 software were used to analyze and plot the obtained data. RESULTS:A total of 29 articles with acceptable quality were included,involving 1 633 patients with knee osteoarthritis.The studies involved four types of exercise:aerobic training,strength training,flexibility/skill training,and mindfulness relaxation training.(1)The results of network meta-analysis showed that compared with routine care/health education,aerobic training could significantly improve pain symptoms(SMD=-3.26,95%CI:-6.33 to-0.19,P<0.05);strength training(SMD=-0.79,95%CI:-1.34 to-0.23,P<0.05)and mindfulness relaxation training(SMD=-0.79,95%CI:-1.23 to-0.34,P<0.05)could significantly improve the function of patients.Aerobic training(SMD=-1.37,95%CI:-2.24 to-0.51,P<0.05)and mindfulness relaxation training(SMD=-0.41,95%CI:-0.80 to-0.02,P<0.05)could significantly improve the functional mobility of patients.Mindfulness relaxation training(SMD=0.70,95%CI:0.21-1.18,P<0.05)and strength training(SMD=0.42,95%CI:0.03-0.81,P<0.05)could significantly improve the quality of life of patients.(2)The cumulative probability ranking results were as follows:pain:aerobic training(86.6%)>flexibility/skill training(60.1%)>strength training(56.8%)>mindfulness relaxation training(34.7%)>routine care/health education(11.7%);Knee function:strength training(73.7%)>mindfulness relaxation training(73.1%)>flexibility/skill training(56.1%)>aerobic training(39.9%)>usual care/health education(7.6%);Functional mobility:aerobic training(94.7%)>mindfulness relaxation training(65.5%)>strength training(45.1%)>flexibility/skill training(41.6%)>routine care/health education(3.2%);Quality of life:mindfulness relaxation training(91.3%)>strength training(68.0%)>flexibility/skill training(44.3%)>aerobic training(34.0%)>usual care/health education(12.3%). CONCLUSION:(1)Exercise therapy is effective in the treatment of knee osteoarthritis,among which aerobic training has the best effect on relieving pain and improving functional mobility.Strength training and mindfulness relaxation training has the best effect on improving patients'function.Mindfulness relaxation training has the best effect on improving the quality of life of patients.(2)Limited by the quality and quantity of the included literature,more high-quality studies are needed to verify it.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
7.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
8.Research on the chemical compositions and their biological activities of Piper nigrum L.
Xing GAO ; Fengping ZHAO ; Wentao WANG ; Wei TIAN ; Canhui ZHENG ; Xin CHEN
Journal of Pharmaceutical Practice and Service 2025;43(7):313-319
Piper nigrum L. is an evergreen climbing vine, which belongs to the genus Piperia in the Piperaceae family. Piper nigrum L., which known as the “king of spices”, is used as both food and medicine. The main active substances in Piper nigrum L. are alkaloids mainly composed of amides, and essential oil, as well as phenolic compounds. In this paper, the chemical compositions, especially amide alkaloids, and their biological activities of Piper nigrum L. were summarized. These studies showed that Piper nigrum L., as a medicinal and food plant, had a wide range of biological activities and was deserved further research and in-depth utilization.
9.The Mesencephalic Locomotor Region for Locomotion Control
Xing-Chen GUO ; Yan XIE ; Xin-Shuo WEI ; Wen-Fen LI ; Ying-Yu SUN
Progress in Biochemistry and Biophysics 2025;52(7):1804-1816
Locomotion, a fundamental motor function encompassing various forms such as swimming, walking, running, and flying, is essential for animal survival and adaptation. The mesencephalic locomotor region (MLR), located at the midbrain-hindbrain junction, is a conserved brain area critical for controlling locomotion. This review highlights recent advances in understanding the MLR’s structure and function across species, from lampreys to mammals and birds, with a particular focus on insights gained from optogenetic studies in mammals. The goal is to uncover universal strategies for MLR-mediated locomotor control. Electrical stimulation of the MLR in species such as lampreys, salamanders, cats, and mice initiates locomotion and modulates speed and patterns. For example, in lampreys, MLR stimulation induces swimming, with increased intensity or frequency enhancing propulsive force. Similarly, in salamanders, graded stimulation transitions locomotor outputs from walking to swimming. Histochemical studies reveal that effective MLR stimulation sites colocalize with cholinergic neurons, suggesting a conserved neurochemical basis for locomotion control. In mammals, the MLR comprises two key nuclei: the cuneiform nucleus (CnF) and the pedunculopontine nucleus (PPN). Both nuclei contain glutamatergic and GABAergic neurons, with the PPN additionally housing cholinergic neurons. Optogenetic studies in mice by selectively activating glutamatergic neurons have demonstrated that the CnF and PPN play distinct roles in motor control: the CnF drives rapid escape behaviors, while the PPN regulates slower, exploratory movements. This functional specialization within the MLR allows animals to adapt their locomotion patterns and speed in response to environmental demands and behavioral objectives. Similar to findings in lampreys, the CnF and PPN in mice transmit motor commands to spinal effector circuits by modulating the activity of brainstem reticular formation neurons. However, they achieve this through distinct reticulospinal pathways, enabling the generation of specific behaviors. Further insights from monosynaptic rabies viral tracing reveal that the CnF and PPN integrate inputs from diverse brain regions to produce context-appropriate behaviors. For instance, glutamatergic neurons in the PPN receive signals from other midbrain structures, the basal ganglia, and medullary nuclei, whereas glutamatergic neurons in the CnF rarely receive inputs from the basal ganglia but instead are strongly influenced by the periaqueductal grey and inferior colliculus within the midbrain. These differential connectivity patterns underscore the specialized roles of the CnF and PPN in motor control, highlighting their unique contributions to coordinating locomotion. Birds exhibit exceptional flight capabilities, yet the avian MLR remains poorly understood. Comparative studies suggest that the pedunculopontine tegmental nucleus (PPTg) in birds is homologous to the mammalian PPN, which contains cholinergic neurons, while the intercollicular nucleus (ICo) or nucleus isthmi pars magnocellularis (ImC) may correspond to the CnF. These findings provide important clues for identifying the avian MLR and elucidating its role in flight control. However, functional validation through targeted experiments is urgently needed to confirm these hypotheses. Optogenetics and other advanced techniques in mice have greatly advanced MLR research, enabling precise manipulation of specific neuronal populations. Future studies should extend these methods to other species, particularly birds, to explore unique locomotor adaptations. Comparative analyses of MLR structure and function across species will deepen our understanding of the conserved and evolved features of motor control, revealing fundamental principles of locomotion regulation throughout evolution. By integrating findings from diverse species, we can uncover how the MLR has been adapted to meet the locomotor demands of different environments, from aquatic to aerial habitats.

Result Analysis
Print
Save
E-mail