1.Modified Lianpoyin Formula Treats Hp-associated Gastritis by Regulating Mitochondrial Autophagy and NLRP3 Inflammasome Signaling Pathway
Siyi ZHANG ; Haopeng DANG ; Wenliang LYU ; Wentao ZHOU ; Wei GUO ; Lin LIU ; Lan ZENG ; Yujie SUN ; Luming LIANG ; Yi ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):178-187
ObjectiveTo explore the effect of modified Lianpoyin formula (LPYJWF) in the treatment of Helicobacter pylori (Hp)-associated gastric mucosal damage based on mitochondrial autophagy and NLRP3 inflammasome signaling pathway. MethodsA total of 60 eight-week-old Balb/c male mice were assigned via the random number table method into control, model, high-dose LPYJWF (LPYJWF-H, 27.3 g·kg-1·d-1), medium-dose LPYJWF (LPYJWF-M, 13.65 g·kg-1·d-1), low-dose LPYJWF (LPYJWF-L, 6.83 g·kg-1·d-1), and quadruple therapy groups. Except the control group, other groups were modeled for Hp infection. Mice were administrated with LPYJWF at corresponding doses by gavage. Quadruple therapy group was given omeprazole (6.06 mg·kg-1·d-1) + amoxicillin (303 mg·kg-1·d-1) + clarithromycin (151.67 mg·kg-1·d-1) + colloidal pectin capsules (30.3 mg·kg-1·d-1) by gavage. The control group was given an equal volume of 0.9% NaCl for 14 days. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of gastric mucosa, and Warthin-Starry (W-S) silver staining was used to detect Hp colonization. Transmission electron microscopy was employed to observe the mitochondrial ultrastructure of the gastric tissue, and immunofluorescence co-localization assay was adopted to detect the expression of mitochondrial transcription factor A (TFAM) and translocase of the outer mitochondrial membrane member 20 (TOMM20). The water-soluble tetrazolium salt method and thiobarbituric acid method were used to determine the levels of superoxide dismutase (SOD) and malondialdehyde (MDA), respectively, in the gastric tissue. Western blot was employed to measure the protein levels of PTEN-induced kinase 1 (PINK1), Parkin, p62, microtubule-associated protein 1 light chain 3 (LC3), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), interleukin-1β (IL-1β), and interleukin-18 (IL-18). Real-time quantitative PCR was employed to assess the mRNA levels of PINK1, Parkin, p62, and LC3. ResultsCompared with the control group, the model group presented obvious gastric mucosal damage, colonization of a large number of Hp, severe mitochondrial damage, vacuolated structures due to excessive autophagy, reduced TOMM20 and TFAM co-expression in the gastric mucosal tissue, and reduced SOD and increased MDA (P<0.01). In addition, the gastric tissue in the model group showed up-regulated protein and mRNA levels of PINK1, Parkin, and LC3 and down-regulated protein and mRNA levels of p62 (P<0.01, as well as increased expression of inflammasome-associated proteins NLRP3, ASC, IL-1β, and IL-18 (P<0.01). Compared with the model group, the LPYJWF and quadruple therapy groups showed alleviated pathological damage of gastric mucosa, reduced Hp colonization, mitigated mitochondrial damage, and increased co-expression of TOMM20 and TFAM. The SOD level was elevated in the LPYJWF-L group (P<0.01), and the MDA levels became lowered in the LPYJWF and quadruple therapy groups (P<0.05, P<0.01). Furthermore, the LPYJWF and quadruple therapy groups showed down-regulated mRNA levels of PINK1, Parkin, and LC3 and protein levels of PINK1 and Parkin, and up-regulated mRNA level of p62 (P<0.01). The LPYJWF-M, LPYJWF-H, and quadruple therapy groups showcased down-regulated LC3 Ⅱ/LC3 Ⅰ level (P<0.05, P<0.01) and up-regulated protein level of p62 (P<0.01). The expression of inflammasome-associated proteins NLRP3, ASC, IL-1β, and IL-18 were reduced in the LPYJWF and quadruple therapy groups (P<0.05, P<0.01). ConclusionLPYJWF ameliorates gastric mucosal damage and exerts mucosa-protective effects in Hp-infected mice, which may be related to the inhibition of excessive mitochondrial autophagy, thereby inhibiting the activation of the NLRP3 inflammasome pathway.
2.Modified Lianpoyin Formula Treats Hp-associated Gastritis by Regulating Mitochondrial Autophagy and NLRP3 Inflammasome Signaling Pathway
Siyi ZHANG ; Haopeng DANG ; Wenliang LYU ; Wentao ZHOU ; Wei GUO ; Lin LIU ; Lan ZENG ; Yujie SUN ; Luming LIANG ; Yi ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):178-187
ObjectiveTo explore the effect of modified Lianpoyin formula (LPYJWF) in the treatment of Helicobacter pylori (Hp)-associated gastric mucosal damage based on mitochondrial autophagy and NLRP3 inflammasome signaling pathway. MethodsA total of 60 eight-week-old Balb/c male mice were assigned via the random number table method into control, model, high-dose LPYJWF (LPYJWF-H, 27.3 g·kg-1·d-1), medium-dose LPYJWF (LPYJWF-M, 13.65 g·kg-1·d-1), low-dose LPYJWF (LPYJWF-L, 6.83 g·kg-1·d-1), and quadruple therapy groups. Except the control group, other groups were modeled for Hp infection. Mice were administrated with LPYJWF at corresponding doses by gavage. Quadruple therapy group was given omeprazole (6.06 mg·kg-1·d-1) + amoxicillin (303 mg·kg-1·d-1) + clarithromycin (151.67 mg·kg-1·d-1) + colloidal pectin capsules (30.3 mg·kg-1·d-1) by gavage. The control group was given an equal volume of 0.9% NaCl for 14 days. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of gastric mucosa, and Warthin-Starry (W-S) silver staining was used to detect Hp colonization. Transmission electron microscopy was employed to observe the mitochondrial ultrastructure of the gastric tissue, and immunofluorescence co-localization assay was adopted to detect the expression of mitochondrial transcription factor A (TFAM) and translocase of the outer mitochondrial membrane member 20 (TOMM20). The water-soluble tetrazolium salt method and thiobarbituric acid method were used to determine the levels of superoxide dismutase (SOD) and malondialdehyde (MDA), respectively, in the gastric tissue. Western blot was employed to measure the protein levels of PTEN-induced kinase 1 (PINK1), Parkin, p62, microtubule-associated protein 1 light chain 3 (LC3), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), interleukin-1β (IL-1β), and interleukin-18 (IL-18). Real-time quantitative PCR was employed to assess the mRNA levels of PINK1, Parkin, p62, and LC3. ResultsCompared with the control group, the model group presented obvious gastric mucosal damage, colonization of a large number of Hp, severe mitochondrial damage, vacuolated structures due to excessive autophagy, reduced TOMM20 and TFAM co-expression in the gastric mucosal tissue, and reduced SOD and increased MDA (P<0.01). In addition, the gastric tissue in the model group showed up-regulated protein and mRNA levels of PINK1, Parkin, and LC3 and down-regulated protein and mRNA levels of p62 (P<0.01, as well as increased expression of inflammasome-associated proteins NLRP3, ASC, IL-1β, and IL-18 (P<0.01). Compared with the model group, the LPYJWF and quadruple therapy groups showed alleviated pathological damage of gastric mucosa, reduced Hp colonization, mitigated mitochondrial damage, and increased co-expression of TOMM20 and TFAM. The SOD level was elevated in the LPYJWF-L group (P<0.01), and the MDA levels became lowered in the LPYJWF and quadruple therapy groups (P<0.05, P<0.01). Furthermore, the LPYJWF and quadruple therapy groups showed down-regulated mRNA levels of PINK1, Parkin, and LC3 and protein levels of PINK1 and Parkin, and up-regulated mRNA level of p62 (P<0.01). The LPYJWF-M, LPYJWF-H, and quadruple therapy groups showcased down-regulated LC3 Ⅱ/LC3 Ⅰ level (P<0.05, P<0.01) and up-regulated protein level of p62 (P<0.01). The expression of inflammasome-associated proteins NLRP3, ASC, IL-1β, and IL-18 were reduced in the LPYJWF and quadruple therapy groups (P<0.05, P<0.01). ConclusionLPYJWF ameliorates gastric mucosal damage and exerts mucosa-protective effects in Hp-infected mice, which may be related to the inhibition of excessive mitochondrial autophagy, thereby inhibiting the activation of the NLRP3 inflammasome pathway.
6.Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults (version 2024)
Qingde WANG ; Yuan HE ; Bohua CHEN ; Tongwei CHU ; Jinpeng DU ; Jian DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Hua GUO ; Yong HAI ; Lijun HE ; Dianming JIANG ; Jianyuan JIANG ; Bin LIN ; Bin LIU ; Baoge LIU ; Chunde LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Hongjian LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Tiansheng SUN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Hong XIA ; Guoyong YIN ; Jinglong YAN ; Wen YUAN ; Zhaoming YE ; Jie ZHAO ; Jianguo ZHANG ; Yue ZHU ; Yingjie ZHOU ; Zhongmin ZHANG ; Wei MEI ; Dingjun HAO ; Baorong HE
Chinese Journal of Trauma 2024;40(2):97-106
Ankylosing spondylitis (AS) combined with lower cervical fracture is often categorized into unstable fracture, with a high incidence of neurological injury and a high rate of disability and morbidity. As factors such as shoulder occlusion may affect the accuracy of X-ray imaging diagnosis, it is often easily misdiagnosed at the primary diagnosis. Non-operative treatment has complications such as bone nonunion and the possibility of secondary neurological damage, while the timing, access and choice of surgical treatment are still controversial. Currently, there are no clinical practice guidelines for the treatment of AS combined with lower cervical fracture with or without dislocation. To this end, the Spinal Trauma Group of Orthopedics Branch of Chinese Medical Doctor Association organized experts to formulate Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults ( version 2024) in accordance with the principles of evidence-based medicine, scientificity and practicality, in which 11 recommendations were put forward in terms of the diagnosis, imaging evaluation, typing and treatment, etc, to provide guidance for the diagnosis and treatment of AS combined with lower cervical fracture.
7.Classic Formula Zhigancao Tang: Textual Research and Analysis of Key Information
Zhidan GUO ; Lyuyuan LIANG ; Jialei CAO ; Jinyu CHEN ; Xinghang LYU ; Xuancui JIN ; Yifan SUN ; Yujie CHANG ; Yihan LI ; Bingqi WEI ; Zheng ZHOU ; Bingxiang MA
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(24):198-207
Zhigancao Tang (also known as Fumaitang) is a classic formula for treating "intermittent pulse and palpitations" and is widely used in clinical practice. Sanjia Fumaitang, included in the Catalogue of Ancient Classical Formulas (First Batch) published by the National Administration of Traditional Chinese Medicine of China in 2018, is derived from this formula. This paper employed bibliometric methods to comprehensively investigate and summarize the historical evolution, drug composition, herb origins and preparation, prescription meanings, and ancient and modern applications of Zhigancao Tang, analyzed the composition and usage of Zhigancao Tang, and discussed the reasons and applications of the "Fumaitang" variants created by Wu Jutong. A total of 47 valid pieces of data from 38 ancient texts were included. Results showe that Zhigancao Tang originates from the Treatise on Cold Damage (Shang Han Lun), and the name "Fumaitang" is also recorded in the formula's description. Converted to modern measurements from the Han dynasty system, the recommended preparation for Zhigancao Tang includes 55.2 g of fried Glycyrrhizae Radix et Rhizoma, 41.4 g of Cinnamomi Ramulus, 27.6 g of Ginseng Radix et Rhizoma, 220 g of fresh Rehmannia glutinosa, 27.6 g of Asini Corii Colla, 53 g of Ophiopogonis Radix, 45 g of Cannabis Fructus, and 90 g of Jujubae Fructus. All herbs should be decocted with 1 400 mL of yellow rice wine and 1 600 mL of water until 600 mL. Once the Asini Corii Colla is fully dissolved, the decoction should be taken warm at a dosage of 200 mL, three times a day. Zhigancao Tang is effective for replenishing Qi, warming Yang, nourishing Yin, and nourishing blood and is primarily used to treat “intermittent pulse and palpitations” caused by deficiencies in heart Yin and Yang, as well as malnutrition of the heart meridian and conditions like lung atrophy. Modern applications mainly focus on cardiovascular and cerebrovascular diseases, including arrhythmias, coronary heart disease, and premature ventricular contractions. The findings from this research provide a reference for the further development of Zhigancao Tang.
8.Chinese expert consensus on the diagnosis and treatment of sepsis-induced coagulopathy(2024 edition)
Jing-Chun SONG ; Ren-Yu DING ; Ben LYU ; Heng MEI ; Gang WANG ; Wei ZHANG ; Jing ZHOU ; Jun GUO ; Chinese Society of Thrombosis,Hemostasis and Critical Care,Chinese Medicine Education Association ; Chinese People's Liberation Army Professional Committee of Critical Care Medicine
Medical Journal of Chinese People's Liberation Army 2024;49(11):1221-1236
Sepsis-induced coagulopathy(SIC),a critical and potentially lethal condition arising from sepsis,results in endothelial damage and significant coagulation dysregulation,making it a major factor contributing to mortality among sepsis patients.Early diagnosis and treatment of SIC are expected to improve the prognosis of sepsis patients.In 2019,the International Society on Thrombosis and Hemostasis(ISTH)issued the first guidelines for the diagnosis and treatment of SIC,but there are no corresponding protocols in China.Therefore,Chinese Society of Thrombosis,Hemostasis and Critical Care,Chinese Medicine Education Association,and Chinese People's Liberation Army Professional Committee of Critical Care Medicine jointly formulated the"Chinese Expert Consensus on the Diagnosis and Treatment of Sepsis-induced Coagulopathy(2024 edition)."This consensus includes 5 parts:pathogenesis,classification,laboratory approaches,diagnosis and treatment,with a total of 14 evidence-based recommendations to guide clinical practice.
9.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
10.Research progress on breed characteristics and germplasm resources itilization of Zi goose
Mingdong HUO ; Jiaqiang DONG ; Ping LI ; Wenkai GUO ; Zhifeng CHEN ; Zhigang MA ; Nian-Dong WEI ; Yue ZOU ; Hong ZHANG ; Zhiqiang WANG ; Haotian YANG ; Caihong HAO ; Mingzhe LYU ; Yuxiang HUANG
Chinese Journal of Veterinary Science 2024;44(11):2496-2501
Zi goose is a small local variety with high fecundity,good meat quality,roughage resist-ance,strong adaptability and excellent down quality.It is an excellent female parent for cross breeding among varieties.With the rapid development of goose industry,the variety of Zi goose has not been well protected,the variety is hybrid and degraded seriously,and the number of pure Zi goose is decreasing day by day.This paper reviewed the research progress on the breeding distribu-tion and preservation status of Zi goose and the variety characteristics of Zi goose,in order to pro-vide reference for the research,protection and utilization of germplasm resources of Zi goose and the stable development of goose industry.

Result Analysis
Print
Save
E-mail