1.Frontal and Parietal Alpha Asymmetry as Biomarkers for Negative Symptoms in Schizophrenia
Yao-Cheng WU ; Chih-Chung HUANG ; Yi-Guang WANG ; Chu-Ya YANG ; Wei-Chou CHANG ; Chuan-Chia CHANG ; Hsin-An CHANG
Psychiatry Investigation 2025;22(4):435-441
		                        		
		                        			 Objective:
		                        			Negative symptoms in schizophrenia indicate a poor prognosis. However, the mechanisms underlying the development of negative symptoms remain unclear. This study investigated the relationship between negative symptoms in schizophrenia and frontal alpha asymmetry (FAA). 
		                        		
		                        			Methods:
		                        			The study used a 32-channel electroencephalography to acquire alpha power in 4 target-paired sites in each patient. Regional alpha asymmetry was calculated based on the alpha power using EEGLAB Frontal Alpha Asymmetry Toolbox. 
		                        		
		                        			Results:
		                        			Sixty schizophrenia patients with predominant negative symptoms (PNS), 72 stabilized schizophrenia (SS) patients, and 73 healthy control (HC) participants were enrolled in this study. No significant differences were observed in FAA between the PNS and SS groups, although both groups exhibited reduced P3-P4 alpha asymmetry compared to HCs. A positive correlation was found between F7-F8 alpha asymmetry and illness duration. Additionally, a predictive model based on P3-P4 alpha asymmetry scores was able to differentiate schizophrenia patients from HCs, achieving a sensitivity of 71.2% and a specificity of 72.6%. 
		                        		
		                        			Conclusion
		                        			This study highlighted that parietal alpha asymmetry could serve as a valuable diagnostic tool for schizophrenia. 
		                        		
		                        		
		                        		
		                        	
2.tRF Prospect: tRNA-derived Fragment Target Prediction Based on Neural Network Learning
Dai-Xi REN ; Jian-Yong YI ; Yong-Zhen MO ; Mei YANG ; Wei XIONG ; Zhao-Yang ZENG ; Lei SHI
Progress in Biochemistry and Biophysics 2025;52(9):2428-2438
		                        		
		                        			
		                        			ObjectiveTransfer RNA-derived fragments (tRFs) are a recently characterized and rapidly expanding class of small non-coding RNAs, typically ranging from 13 to 50 nucleotides in length. They are derived from mature or precursor tRNA molecules through specific cleavage events and have been implicated in a wide range of cellular processes. Increasing evidence indicates that tRFs play important regulatory roles in gene expression, primarily by interacting with target messenger RNAs (mRNAs) to induce transcript degradation, in a manner partially analogous to microRNAs (miRNAs). However, despite their emerging biological relevance and potential roles in disease mechanisms, there remains a significant lack of computational tools capable of systematically predicting the interaction landscape between tRFs and their target mRNAs. Existing databases often rely on limited interaction features and lack the flexibility to accommodate novel or user-defined tRF sequences. The primary goal of this study was to develop a machine learning based prediction algorithm that enables high-throughput, accurate identification of tRF:mRNA binding events, thereby facilitating the functional analysis of tRF regulatory networks. MethodsWe began by assembling a manually curated dataset of 38 687 experimentally verified tRF:mRNA interaction pairs and extracting seven biologically informed features for each pair: (1) AU content of the binding site, (2) site pairing status, (3) binding region location, (4) number of binding sites per mRNA, (5) length of the longest consecutive complementary stretch, (6) total binding region length, and (7) seed sequence complementarity. Using this dataset and feature set, we trained 4 distinct machine learning classifiers—logistic regression, random forest, decision tree, and a multilayer perceptron (MLP)—to compare their ability to discriminate true interactions from non-interactions. Each model’s performance was evaluated using overall accuracy, receiver operating characteristic (ROC) curves, and the corresponding area under the ROC curve (AUC). The MLP consistently achieved the highest AUC among the four, and was therefore selected as the backbone of our prediction framework, which we named tRF Prospect. For biological validation, we retrieved 3 high-throughput RNA-seq datasets from the gene expression omnibus (GEO) in which individual tRFs were overexpressed: AS-tDR-007333 (GSE184690), tRF-3004b (GSE197091), and tRF-20-S998LO9D (GSE208381). Differential expression analysis of each dataset identified genes downregulated upon tRF overexpression, which we designated as putative targets. We then compared the predictions generated by tRF Prospect against those from three established tools—tRFTar, tRForest, and tRFTarget—by quantifying the number of predicted targets for each tRF and assessing concordance with the experimentally derived gene sets. ResultsThe proposed algorithm achieved high predictive accuracy, with an AUC of 0.934. Functional validation was conducted using transcriptome-wide RNA-seq datasets from cells overexpressing specific tRFs, confirming the model’s ability to accurately predict biologically relevant downregulation of mRNA targets. When benchmarked against established tools such as tRFTar, tRForest, and tRFTarget, tRF Prospect consistently demonstrated superior performance, both in terms of predictive precision and sensitivity, as well as in identifying a higher number of true-positive interactions. Moreover, unlike static databases that are limited to precomputed results, tRF Prospect supports real-time prediction for any user-defined tRF sequence, enhancing its applicability in exploratory and hypothesis-driven research. ConclusionThis study introduces tRF Prospect as a powerful and flexible computational tool for investigating tRF:mRNA interactions. By leveraging the predictive strength of deep learning and incorporating a broad spectrum of interaction-relevant features, it addresses key limitations of existing platforms. Specifically, tRF Prospect: (1) expands the range of detectable tRF and target types; (2) improves prediction accuracy through multilayer perceptron model; and (3) allows for dynamic, user-driven analysis beyond database constraints. Although the current version emphasizes miRNA-like repression mechanisms and faces challenges in accurately capturing 5'UTR-associated binding events, it nonetheless provides a critical foundation for future studies aiming to unravel the complex roles of tRFs in gene regulation, cellular function, and disease pathogenesis. 
		                        		
		                        		
		                        		
		                        	
3.Introduction of the main addition and revision of the Chinese Pharmacopoeia 2025 Edition(Volume Ⅱ)
ZHOU Yi ; WANG Zhijun ; YUE Zhihua ; CHENG Qilei ; YUE Ruiqi ; YANG Xi ; GUO Wei ; MA Shuangcheng
Drug Standards of China 2025;26(1):023-027
		                        		
		                        			
		                        			The Pharmacopeia of the People’s Republic of China 2025 Edition (referred to as the Chinese Pharmacopoeia 2025 Edition, ChP 2025) will be promulgated and implemented. This article introduces the process of development of ChP 2025 Edition (Volume Ⅱ), including the selection, the revision of general notices,the addition and revision of drug monographs, etc., and provides some analysis and examples to illustrate,which can facilitate the readers to understand and implement the ChP 2025 Edition (Volume Ⅱ).
		                        		
		                        		
		                        		
		                        	
4.Rapid Identification of Different Parts of Nardostachys jatamansi Based on HS-SPME-GC-MS and Ultra-fast Gas Phase Electronic Nose
Tao WANG ; Xiaoqin ZHAO ; Yang WEN ; Momeimei QU ; Min LI ; Jing WEI ; Xiaoming BAO ; Ying LI ; Yuan LIU ; Xiao LUO ; Wenbing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):182-191
		                        		
		                        			
		                        			ObjectiveTo establish a model that can quickly identify the aroma components in different parts of Nardostachys jatamansi, so as to provide a quality control basis for the market circulation and clinical use of N. jatamansi. MethodsHeadspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS) combined with Smart aroma database and National Institute of Standards and Technology(NIST) database were used to characterize the aroma components in different parts of N. jatamansi, and the aroma components were quantified according to relative response factor(RRF) and three internal standards, and the markers of aroma differences in different parts of N. jatamansi were identified by orthogonal partial least squares-discriminant analysis(OPLS-DA) and cluster thermal analysis based on variable importance in the projection(VIP) value >1 and P<0.01. The odor data of different parts of N. jatamansi were collected by Heracles Ⅱ Neo ultra-fast gas phase electronic nose, and the correlation between compound types of aroma components collected by the ultra-fast gas phase electronic nose and the detection results of HS-SPME-GC-MS was investigated by drawing odor fingerprints and odor response radargrams. Chromatographic peak information with distinguishing ability≥0.700 and peak area≥200 was selected as sensor data, and the rapid identification model of different parts of N. jatamansi was established by principal component analysis(PCA), discriminant factor alysis(DFA), soft independent modeling of class analogies(SIMCA) and statistical quality control analysis(SQCA). ResultsThe HS-SPME-GC-MS results showed that there were 28 common components in the underground and aboveground parts of N. jatamansi, of which 22 could be quantified and 12 significantly different components were screened out. Among these 12 components, the contents of five components(ethyl isovalerate, 2-pentylfuran, benzyl alcohol, nonanal and glacial acetic acid,) in the aboveground part of N. jatamansi were significantly higher than those in the underground part(P<0.01), the contents of β-ionone, patchouli alcohol, α-caryophyllene, linalyl butyrate, valencene, 1,8-cineole and p-cymene in the underground part of N. jatamansi were significantly higher than those in the aboveground part(P<0.01). Heracles Ⅱ Neo electronic nose results showed that the PCA discrimination index of the underground and aboveground parts of N. jatamansi was 82, and the contribution rates of the principal component factors were 99.94% and 99.89% when 2 and 3 principal components were extracted, respectively. The contribution rate of the discriminant factor 1 of the DFA model constructed on the basis of PCA was 100%, the validation score of the SIMCA model for discrimination of the two parts was 99, and SQCA could clearly distinguish different parts of N. jatamansi. ConclusionHS-SPME-GC-MS can clarify the differential markers of underground and aboveground parts of N. jatamansi. The four analytical models provided by Heracles Ⅱ Neo electronic nose(PCA, DFA, SIMCA and SQCA) can realize the rapid identification of different parts of N. jatamansi. Combining the two results, it is speculated that terpenes and carboxylic acids may be the main factors contributing to the difference in aroma between the underground and aboveground parts of N. jatamansi. 
		                        		
		                        		
		                        		
		                        	
5.Screening of biomarkers for fibromyalgia syndrome and analysis of immune infiltration
Yani LIU ; Jinghuan YANG ; Huihui LU ; Yufang YI ; Zhixiang LI ; Yangfu OU ; Jingli WU ; Bing WEI
Chinese Journal of Tissue Engineering Research 2025;29(5):1091-1100
		                        		
		                        			
		                        			BACKGROUND:Fibromyalgia syndrome,as a common rheumatic disease,is related to central sensitization and immune abnormalities.However,the specific mechanism has not been elucidated,and there is a lack of specific diagnostic markers.Exploring the possible pathogenesis of this disease has important clinical significance. OBJECTIVE:To screen the potential diagnostic marker genes of fibromyalgia syndrome and analyze the possible immune infiltration characteristics based on bioinformatics methods,such as weighted gene co-expression network analysis(WGCNA),and machine learning. METHODS:Gene expression profiles in peripheral serum of fibromyalgia syndrome patients and healthy controls were obtained from the gene expression omnibus(GEO)database.The differentially co-expressed genes were screened in the expression profile by differential analysis and WGCNA analysis.Least absolute shrinkage and selection operator(LASSO)and support vector machine-recursive feature elimination(SVM-RFE)machine learning algorithm were further used to identify hub biomarkers,and draw receiver operating characteristic curve(ROC)to evaluate the accuracy of diagnosing fibromyalgia syndrome.Finally,single sample gene set enrichment analysis(ssGSEA)and gene set enrichment analysis(GSEA)were used to evaluate the immune cell infiltration and pathway enrichment in patients with fibromyalgia syndrome. RESULTS AND CONCLUSION:Eight down-regulated differentially expressed genes(DEGs)were obtained after differential analysis of the GSE67311 dataset according to the conditions of log2|(FC)|>0 and P<0.05.After WGCNA analysis,497 genes were included in the module(MEdarkviolet)with the highest positive correlation(r=0.22,P=0.04),and 19 genes were included in the module(MEsalmon2)with the highest negative correlation(r=-0.41,P=6×10-5).After intersecting DEGs and the module genes of WGCNA,seven genes were obtained.Four genes were screened out by LASSO regression algorithm and five genes were screened out by SVM-RFE machine learning algorithm.After the intersection of the two,three core genes were identified,which were germinal center associated signaling and motility like,integrin beta-8,and carboxypeptidase A3.The areas under the ROC curve of the three core genes were 0.744,0.739,and 0.734,respectively,indicating that they have good diagnostic value and can be used as biomarkers for fibromyalgia syndrome.The results of immune infiltration analysis showed that memory B cells,CD56 bright NK cells,and mast cells were significantly down-regulated in patients with fibromyalgia syndrome compared with the control group(P<0.05),and were significantly positively correlated with the above three biomarkers(P<0.05).The enrichment analysis suggested that there were nine fibromyalgia syndrome enrichment pathways,mainly related to olfactory transduction pathway,neuroactive ligand-receptor interaction,and infection pathway.The above results showed that the occurrence and development of fibromyalgia syndrome are related to the involvement of multiple genes,abnormal immune regulation,and multiple pathways imbalance.However,the interactions between these genes and immune cells,as well as their relationships with various pathways need to be further investigated.
		                        		
		                        		
		                        		
		                        	
6.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
		                        		
		                        			 Objective:
		                        			Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic. 
		                        		
		                        			Methods:
		                        			Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC). 
		                        		
		                        			Results:
		                        			LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models. 
		                        		
		                        			Conclusion
		                        			Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.	 
		                        		
		                        		
		                        		
		                        	
7.Association between nonalcoholic fatty liver disease and incidence of inflammatory bowel disease: a nationwide population‑based cohort study
Ying-Hsiang WANG ; Chi-Hsiang CHUNG ; Tien-Yu HUANG ; Chao-Feng CHANG ; Chi-Wei YANG ; Wu-Chien CHIEN ; Yi-Chiao CHENG
Intestinal Research 2025;23(1):76-84
		                        		
		                        			 Background/Aims:
		                        			Nonalcoholic fatty liver disease (NAFLD) is a common disease with severe inflammatory processes associated with numerous gastrointestinal diseases, such as inflammatory bowel disease (IBD). Therefore, we investigated the relationship between NAFLD and IBD and the possible risk factors associated with the diagnosis of IBD.  
		                        		
		                        			Methods:
		                        			This longitudinal nationwide cohort study investigated the risk of IBD in patients with NAFLD alone. General characteristics, comorbidities, and incidence of IBD were also compared.  
		                        		
		                        			Results:
		                        			Patients diagnosed with NAFLD had a significant risk of developing IBD compared to control individuals, who were associated with a 2.245-fold risk of the diagnosis of IBD and a 2.260- and 2.231-fold of increased diagnosis of ulcerative colitis and Crohn’s disease, respectively (P< 0.001). The cumulative risk of IBD increased annually during the follow-up of patients with NAFLD (P< 0.001).  
		                        		
		                        			Conclusions
		                        			Our results emphasize that NAFLD significantly impacts its incidence in patients with NAFLD. If patients with NAFLD present with risk factors, such as diabetes mellitus and dyslipidemia, these conditions should be properly treated with regular follow-ups. Furthermore, we believe that these causes may be associated with the second peak of IBD. 
		                        		
		                        		
		                        		
		                        	
8.Antiviral therapy for chronic hepatitis B with mildly elevated aminotransferase: A rollover study from the TORCH-B trial
Yao-Chun HSU ; Chi-Yi CHEN ; Cheng-Hao TSENG ; Chieh-Chang CHEN ; Teng-Yu LEE ; Ming-Jong BAIR ; Jyh-Jou CHEN ; Yen-Tsung HUANG ; I-Wei CHANG ; Chi-Yang CHANG ; Chun-Ying WU ; Ming-Shiang WU ; Lein-Ray MO ; Jaw-Town LIN
Clinical and Molecular Hepatology 2025;31(1):213-226
		                        		
		                        			 Background/Aims:
		                        			Treatment indications for patients with chronic hepatitis B (CHB) remain contentious, particularly for patients with mild alanine aminotransferase (ALT) elevation. We aimed to evaluate treatment effects in this patient population. 
		                        		
		                        			Methods:
		                        			This rollover study extended a placebo-controlled trial that enrolled non-cirrhotic patients with CHB and ALT levels below two times the upper limit of normal. Following 3 years of randomized intervention with either tenofovir disoproxil fumarate (TDF) or placebo, participants were rolled over to open-label TDF for 3 years. Liver biopsies were performed before and after the treatment to evaluate histopathological changes. Virological, biochemical, and serological outcomes were also assessed (NCT02463019). 
		                        		
		                        			Results:
		                        			Of 146 enrolled patients (median age 47 years, 80.8% male), 123 completed the study with paired biopsies. Overall, the Ishak fibrosis score decreased in 74 (60.2%), remained unchanged in 32 (26.0%), and increased in 17 (13.8%) patients (p<0.0001). The Knodell necroinflammation score decreased in 58 (47.2%), remained unchanged in 29 (23.6%), and increased in 36 (29.3%) patients (p=0.0038). The proportion of patients with an Ishak score ≥ 3 significantly decreased from 26.8% (n=33) to 9.8% (n=12) (p=0.0002). Histological improvements were more pronounced in patients switching from placebo. Virological and biochemical outcomes also improved in placebo switchers and remained stable in patients who continued TDF. However, serum HBsAg levels did not change and no patient cleared HBsAg. 
		                        		
		                        			Conclusions
		                        			In CHB patients with minimally raised ALT, favorable histopathological, biochemical, and virological outcomes were observed following 3-year TDF treatment, for both treatment-naïve patients and those already on therapy. 
		                        		
		                        		
		                        		
		                        	
9.Frontal and Parietal Alpha Asymmetry as Biomarkers for Negative Symptoms in Schizophrenia
Yao-Cheng WU ; Chih-Chung HUANG ; Yi-Guang WANG ; Chu-Ya YANG ; Wei-Chou CHANG ; Chuan-Chia CHANG ; Hsin-An CHANG
Psychiatry Investigation 2025;22(4):435-441
		                        		
		                        			 Objective:
		                        			Negative symptoms in schizophrenia indicate a poor prognosis. However, the mechanisms underlying the development of negative symptoms remain unclear. This study investigated the relationship between negative symptoms in schizophrenia and frontal alpha asymmetry (FAA). 
		                        		
		                        			Methods:
		                        			The study used a 32-channel electroencephalography to acquire alpha power in 4 target-paired sites in each patient. Regional alpha asymmetry was calculated based on the alpha power using EEGLAB Frontal Alpha Asymmetry Toolbox. 
		                        		
		                        			Results:
		                        			Sixty schizophrenia patients with predominant negative symptoms (PNS), 72 stabilized schizophrenia (SS) patients, and 73 healthy control (HC) participants were enrolled in this study. No significant differences were observed in FAA between the PNS and SS groups, although both groups exhibited reduced P3-P4 alpha asymmetry compared to HCs. A positive correlation was found between F7-F8 alpha asymmetry and illness duration. Additionally, a predictive model based on P3-P4 alpha asymmetry scores was able to differentiate schizophrenia patients from HCs, achieving a sensitivity of 71.2% and a specificity of 72.6%. 
		                        		
		                        			Conclusion
		                        			This study highlighted that parietal alpha asymmetry could serve as a valuable diagnostic tool for schizophrenia. 
		                        		
		                        		
		                        		
		                        	
10.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
		                        		
		                        			 Objective:
		                        			Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic. 
		                        		
		                        			Methods:
		                        			Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC). 
		                        		
		                        			Results:
		                        			LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models. 
		                        		
		                        			Conclusion
		                        			Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.	 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail