1.Innovation and Practice of Chinese Medicinal Materials Resource Chemistry Leading the Whole Industry Chain Recycling and Green Development of Chinese Medicinal Materials
Jin'ao DUAN ; Sheng GUO ; Shulan SU ; Lanping GUO ; Ming ZHAO ; Rui LIU ; Hui YAN ; Tuanjie WANG ; Zhenzhong WANG ; Wei XIAO ; Luqi HUANG
Journal of Nanjing University of Traditional Chinese Medicine 2024;40(10):1114-1122
The concept,connotation and extension,goals and tasks of the discipline of Chinese medicinal materials resource chem-istry have been proposed and developed for 20 years.Looking back at the 20-year construction and development process,continuous exploration and innovative practice have been carried out around the scientific production and effective utilization of traditional Chinese medicinal materials.The theoretical connotation has been further enriched,the research mode has been further improved,and the tech-nical system has been further expanded.A series of research results have been formed and promoted for application,serving the high-quality development of the traditional Chinese medicinal materials industry,and contributing to the improvement of quality,efficiency,and green development of the entire industry chain of Chinese medicinal resources.However,with the rapid growth of Chinese medici-nal materials industry and the continuous expansion and extension of the industry chain,the waste and by-products generated in the production process of Chinese medicinal agriculture and industry are increasing day by day,causing resource waste and environmental pollution,which has become a new major problem facing the development of the industry.This article focuses on the establishment and case analysis of a model for the full industry chain recycling and low-carbon green development of Chinese medicinal materials,as well as the creation of an ecological industry demonstration park for the recycling of Chinese medicinal materials.It showcases the phased a-chievements made in recent years,aiming to provide demonstration and reference for the low-carbon and green transformation of the Chinese medicinal materials industry from a linear economy model to a circular economy model.It provides reference for improving the efficiency of Chinese medicinal materials utilization and creating new quality productivity,and helps promote low-carbon and green de-velopment in the field of Chinese medicinal materials industry.
2.The effect of Ba Duan Jin on the balance of community-dwelling older adults: a cluster randomized control trial
Leilei DUAN ; Yubin ZHAO ; Yuliang ER ; Pengpeng YE ; Wei WANG ; Xin GAO ; Xiao DENG ; Ye JIN ; Yuan WANG ; Cuirong JI ; Xinyan MA ; Cong GAO ; Yuhong ZHAO ; Suqiu ZHU ; Shuzhen SU ; Xin'e GUO ; Juanjuan PENG ; Yan YU ; Chen YANG ; Yaya SU ; Ming ZHAO ; Lihua GUO ; Yiping WU ; Yangnu LUO ; Ruilin MENG ; Haofeng XU ; Huazhang LIU ; Huihong RUAN ; Bo XIE ; Huimin ZHANG ; Yuhua LIAO ; Yan CHEN ; Linhong WANG
Chinese Journal of Epidemiology 2024;45(2):250-256
Objective:To assess the effectiveness of a 6-month Ba Duan Jin exercise program in improving the balance of community-dwelling older adults.Methods:A two arms, parallel-group, cluster randomized controlled trial was conducted in 1 028 community residents aged 60-80 years in 40 communities in 5 provinces of China. Participants in the intervention group (20 communities, 523 people) received Ba Duan Jin exercise 5 days/week, 1 hour/day for 6 months, and three times of falls prevention health education, and the control group (20 communities, 505 people) received falls prevention health education same as the intervention group. The Berg balance scale (BBS) score was the leading outcome indicator, and the secondary outcome indicators included the length of time of standing on one foot (with eyes open and closed), standing in a tandem stance (with eyes open and closed), the closed circle test, and the timed up to test.Results:A total of 1 028 participants were included in the final analysis, including 731 women (71.11%) and 297 men (28.89%), and the age was (69.87±5.67) years. After the 3-month intervention, compared with the baseline data, the BBS score of the intervention group was significantly higher than the control group by 3.05 (95% CI: 2.23-3.88) points ( P<0.001). After the 6-month intervention, compared with the baseline data, the BBS score of the intervention group was significantly higher than the control group by 4.70 (95% CI: 4.03-5.37) points ( P<0.001). Ba Duan Jin showed significant improvement ( P<0.05) in all secondary outcomes after 6 months of exercise in the intervention group compared with the control group. Conclusions:This study showed that Ba Duan Jin exercise can improve balance in community-dwelling older adults aged 60-80. The longer the exercise time, the better the improvement.
3.The structure,function and regulation mechanism of Vibrio fluvialis Type Ⅵ secretion system
Yu HAN ; Sai-Sen JI ; Qian CHENG ; Yuan-Ming HUANG ; Ran DUAN ; Wei-Li LIANG
Chinese Journal of Zoonoses 2024;40(6):571-577
Type Ⅵ secretion system(T6SS)is a lethal weapon that releases effectors in direct contact to kill eukaryotic predators or prokaryotic competitors.T6SS is of great significance in bacterial environmental adaptability,pathogenicity,and gene horizontal transfer.T6SS has been identified in about 25%of Gram-negative bacteria.Because of its widespread existence,T6SS is considered the key factor of ecological competition.T6SS effectors exerting biological functions have high diversity and do not have conserved sequences,and the regulatory mechanisms involved are complex.Therefore,it is a hot and difficult topic in T6SS research.Vibrio fluvialis(V.fluvialis)as a newly emerging foodborne pathogen,has unique characteristics in the quantity,composition,and physiological function of T6SS,which is related to its wide environmental adaptability and pathoge-nicity.This article mainly reviews the research progress of V.fluvialis T6SS,including its composition,structure,functional activity,and regulatory mechanism.
4.A case of repairing the destructive high-voltage electric burn wounds in the head, face, and neck based on the economic theory of flaps
Wanli GUO ; Peng DUAN ; Zhiguo MING ; Taiping WEI
Chinese Journal of Burns 2024;40(1):87-89
In September 8 th, 2021, a male patient (aged 18 years) with severe destructive injuries of high-voltage electric burns in the head, face, and neck was admitted to General Hospital of Taiyuan Iron Steel (Group) Co., Ltd. Based on the economic theory of flaps, the flap donor site and transplantation method were optimized and evaluated before surgery, and then debridement of head, face, and neck wounds+removal of necrotic skull+free transplantation of super large latissimus dorsi myocutaneous flap+thin intermediate thickness skin graft transplantation from the left thigh was performed. The extra large flap donor site wound was sutured directly. This surgery reduced the adverse consequences of the flap donor site on the premise of ensure of repair effect. After operation, the patient's condition was stable, the flap and skin graft survived well, the repair effect of wound was well, the scar in the flap donor area was relatively mild, and the upper limb had no dysfunction.
5.Application progress of artificial intelligence in cardiovascular health management
Kun WANG ; Ming LI ; Xiao-Bo ZHANG ; Yi-Ping XIA ; Pei-Wei ZHAO ; Ying-Zhong DUAN
Chinese Medical Equipment Journal 2024;45(2):92-96
The current situation of artificial intelligence(AI)was introduced when applied in the key links of cardiovascular health management such as risk prediction,early screening,clinical decision support and health consultation and education.The deficiencies of AI during the application were analyzed,and the prospects and development directions of AI in cardiovascular health management were pointed out.[Chinese Medical Equipment Journal,2024,45(2):92-96]
6.Quantitative diagnosis of early acute compartment syndrome using two-dimensional shear wave elastography in a rabbit model
Jun ZHANG ; Kunlong DUAN ; Junci WEI ; Wanfu ZHANG ; Huihui ZHOU ; Lin SANG ; Yuanyuan SUN ; Xue GONG ; Hao GUAN ; Ming YU
Ultrasonography 2024;43(5):345-353
Purpose:
This study explored the association of the elasticity modulus and shear wave velocity (SWV) of the tibialis anterior muscle, as measured by two-dimensional shear wave elastography (2D-SWE), with the intracompartmental pressure (ICP) determined using the Whitesides method in a New Zealand rabbit model of acute compartment syndrome (ACS). Additionally, it evaluated the viability of 2D-SWE as a noninvasive, quantitative tool for the early detection of ACS.
Methods:
An ACS model was established through direct external compression by applying pressure bandaging to the lower legs of 15 New Zealand rabbits using neonatal blood pressure cuffs. Another five animals represented a non-modeled control group. To measure the elasticity modulus and SWV of the tibialis anterior muscles, 2D-SWE was employed. Blood oxygen saturation, serum creatine kinase (CK), and myoglobin levels were monitored. Subsequently, the anterior tibial compartment was dissected, and the tibialis anterior was removed for hematoxylin and eosin staining to assess muscle injury.
Results:
The elasticity modulus and SWV of the tibialis anterior muscle increased with compression duration, as did serum CK and myoglobin levels. ICP was strongly positively correlated with these parameters, particularly mean velocity (r=0.942, P<0.001) and CK (r=0.942, P<0.001). Blood oxygen saturation was negatively correlated with ICP (r=-0.887, P<0.001). Histological analysis indicated progressive muscle cell swelling over time, with damage transitioning from reversible to irreversible and culminating in necrosis.
Conclusion
In a rabbit ACS model, ICP was strongly positively correlated with muscle elasticity modulus/SWV. Consequently, 2D-SWE may represent a novel tool for assessing early-phase ACS.
7.Quantitative diagnosis of early acute compartment syndrome using two-dimensional shear wave elastography in a rabbit model
Jun ZHANG ; Kunlong DUAN ; Junci WEI ; Wanfu ZHANG ; Huihui ZHOU ; Lin SANG ; Yuanyuan SUN ; Xue GONG ; Hao GUAN ; Ming YU
Ultrasonography 2024;43(5):345-353
Purpose:
This study explored the association of the elasticity modulus and shear wave velocity (SWV) of the tibialis anterior muscle, as measured by two-dimensional shear wave elastography (2D-SWE), with the intracompartmental pressure (ICP) determined using the Whitesides method in a New Zealand rabbit model of acute compartment syndrome (ACS). Additionally, it evaluated the viability of 2D-SWE as a noninvasive, quantitative tool for the early detection of ACS.
Methods:
An ACS model was established through direct external compression by applying pressure bandaging to the lower legs of 15 New Zealand rabbits using neonatal blood pressure cuffs. Another five animals represented a non-modeled control group. To measure the elasticity modulus and SWV of the tibialis anterior muscles, 2D-SWE was employed. Blood oxygen saturation, serum creatine kinase (CK), and myoglobin levels were monitored. Subsequently, the anterior tibial compartment was dissected, and the tibialis anterior was removed for hematoxylin and eosin staining to assess muscle injury.
Results:
The elasticity modulus and SWV of the tibialis anterior muscle increased with compression duration, as did serum CK and myoglobin levels. ICP was strongly positively correlated with these parameters, particularly mean velocity (r=0.942, P<0.001) and CK (r=0.942, P<0.001). Blood oxygen saturation was negatively correlated with ICP (r=-0.887, P<0.001). Histological analysis indicated progressive muscle cell swelling over time, with damage transitioning from reversible to irreversible and culminating in necrosis.
Conclusion
In a rabbit ACS model, ICP was strongly positively correlated with muscle elasticity modulus/SWV. Consequently, 2D-SWE may represent a novel tool for assessing early-phase ACS.
8.Quantitative diagnosis of early acute compartment syndrome using two-dimensional shear wave elastography in a rabbit model
Jun ZHANG ; Kunlong DUAN ; Junci WEI ; Wanfu ZHANG ; Huihui ZHOU ; Lin SANG ; Yuanyuan SUN ; Xue GONG ; Hao GUAN ; Ming YU
Ultrasonography 2024;43(5):345-353
Purpose:
This study explored the association of the elasticity modulus and shear wave velocity (SWV) of the tibialis anterior muscle, as measured by two-dimensional shear wave elastography (2D-SWE), with the intracompartmental pressure (ICP) determined using the Whitesides method in a New Zealand rabbit model of acute compartment syndrome (ACS). Additionally, it evaluated the viability of 2D-SWE as a noninvasive, quantitative tool for the early detection of ACS.
Methods:
An ACS model was established through direct external compression by applying pressure bandaging to the lower legs of 15 New Zealand rabbits using neonatal blood pressure cuffs. Another five animals represented a non-modeled control group. To measure the elasticity modulus and SWV of the tibialis anterior muscles, 2D-SWE was employed. Blood oxygen saturation, serum creatine kinase (CK), and myoglobin levels were monitored. Subsequently, the anterior tibial compartment was dissected, and the tibialis anterior was removed for hematoxylin and eosin staining to assess muscle injury.
Results:
The elasticity modulus and SWV of the tibialis anterior muscle increased with compression duration, as did serum CK and myoglobin levels. ICP was strongly positively correlated with these parameters, particularly mean velocity (r=0.942, P<0.001) and CK (r=0.942, P<0.001). Blood oxygen saturation was negatively correlated with ICP (r=-0.887, P<0.001). Histological analysis indicated progressive muscle cell swelling over time, with damage transitioning from reversible to irreversible and culminating in necrosis.
Conclusion
In a rabbit ACS model, ICP was strongly positively correlated with muscle elasticity modulus/SWV. Consequently, 2D-SWE may represent a novel tool for assessing early-phase ACS.
9.Quantitative diagnosis of early acute compartment syndrome using two-dimensional shear wave elastography in a rabbit model
Jun ZHANG ; Kunlong DUAN ; Junci WEI ; Wanfu ZHANG ; Huihui ZHOU ; Lin SANG ; Yuanyuan SUN ; Xue GONG ; Hao GUAN ; Ming YU
Ultrasonography 2024;43(5):345-353
Purpose:
This study explored the association of the elasticity modulus and shear wave velocity (SWV) of the tibialis anterior muscle, as measured by two-dimensional shear wave elastography (2D-SWE), with the intracompartmental pressure (ICP) determined using the Whitesides method in a New Zealand rabbit model of acute compartment syndrome (ACS). Additionally, it evaluated the viability of 2D-SWE as a noninvasive, quantitative tool for the early detection of ACS.
Methods:
An ACS model was established through direct external compression by applying pressure bandaging to the lower legs of 15 New Zealand rabbits using neonatal blood pressure cuffs. Another five animals represented a non-modeled control group. To measure the elasticity modulus and SWV of the tibialis anterior muscles, 2D-SWE was employed. Blood oxygen saturation, serum creatine kinase (CK), and myoglobin levels were monitored. Subsequently, the anterior tibial compartment was dissected, and the tibialis anterior was removed for hematoxylin and eosin staining to assess muscle injury.
Results:
The elasticity modulus and SWV of the tibialis anterior muscle increased with compression duration, as did serum CK and myoglobin levels. ICP was strongly positively correlated with these parameters, particularly mean velocity (r=0.942, P<0.001) and CK (r=0.942, P<0.001). Blood oxygen saturation was negatively correlated with ICP (r=-0.887, P<0.001). Histological analysis indicated progressive muscle cell swelling over time, with damage transitioning from reversible to irreversible and culminating in necrosis.
Conclusion
In a rabbit ACS model, ICP was strongly positively correlated with muscle elasticity modulus/SWV. Consequently, 2D-SWE may represent a novel tool for assessing early-phase ACS.
10.Quantitative diagnosis of early acute compartment syndrome using two-dimensional shear wave elastography in a rabbit model
Jun ZHANG ; Kunlong DUAN ; Junci WEI ; Wanfu ZHANG ; Huihui ZHOU ; Lin SANG ; Yuanyuan SUN ; Xue GONG ; Hao GUAN ; Ming YU
Ultrasonography 2024;43(5):345-353
Purpose:
This study explored the association of the elasticity modulus and shear wave velocity (SWV) of the tibialis anterior muscle, as measured by two-dimensional shear wave elastography (2D-SWE), with the intracompartmental pressure (ICP) determined using the Whitesides method in a New Zealand rabbit model of acute compartment syndrome (ACS). Additionally, it evaluated the viability of 2D-SWE as a noninvasive, quantitative tool for the early detection of ACS.
Methods:
An ACS model was established through direct external compression by applying pressure bandaging to the lower legs of 15 New Zealand rabbits using neonatal blood pressure cuffs. Another five animals represented a non-modeled control group. To measure the elasticity modulus and SWV of the tibialis anterior muscles, 2D-SWE was employed. Blood oxygen saturation, serum creatine kinase (CK), and myoglobin levels were monitored. Subsequently, the anterior tibial compartment was dissected, and the tibialis anterior was removed for hematoxylin and eosin staining to assess muscle injury.
Results:
The elasticity modulus and SWV of the tibialis anterior muscle increased with compression duration, as did serum CK and myoglobin levels. ICP was strongly positively correlated with these parameters, particularly mean velocity (r=0.942, P<0.001) and CK (r=0.942, P<0.001). Blood oxygen saturation was negatively correlated with ICP (r=-0.887, P<0.001). Histological analysis indicated progressive muscle cell swelling over time, with damage transitioning from reversible to irreversible and culminating in necrosis.
Conclusion
In a rabbit ACS model, ICP was strongly positively correlated with muscle elasticity modulus/SWV. Consequently, 2D-SWE may represent a novel tool for assessing early-phase ACS.

Result Analysis
Print
Save
E-mail