1.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
		                        		
		                        			
		                        			With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
		                        		
		                        		
		                        		
		                        	
2.Outcomes of identifying enlarged vestibular aqueduct (Mondini malformation) related gene mutation in Mongolian people
Jargalkhuu E ; Tserendulam B ; Maralgoo J ; Zaya M ; Enkhtuya B ; Ulzii B ; Ynjinlhkam E ; Chuluun-Erdene Ts ; Chen-Chi Wu ; Cheng-Yu Tsai ; Yin-Hung Lin ; Yi-Hsin Lin ; Yen-Hui Chan ; Chuan-Jen Hsu ; Wei-Chung Hsu ; Pei-Lung Chen
Mongolian Journal of Health Sciences 2025;87(3):8-15
		                        		
		                        			Background:
		                        			Hearing loss (HL) is one of the most common sensory disorders, 
affecting over 5-8% of the world's population. Approximately half of HL cases are 
attributed to genetic factors. In hereditary deafness, about 75-80% is inherited 
through autosomal recessive inheritance, and common pathogenic genes include 
GJB2 and SLC26A4. Pathogenic variants in the SLC26A4gene are the leading 
cause of hereditary hearing loss in humans, second only to the GJB2 gene. Variants in the SLC26A4gene cause hearing loss, which can be non-syndromic autosomal recessive deafness (DFNB4, OMIM #600791) associated with enlarged 
vestibular aqueduct (EVA) or Pendred syndrome (Pendred, OMIM #605646). 
DFNB4 is characterized by sensorineural hearing loss combined with EVA or less 
common cochlear malformation defect. Pendred syndrome is characterized by bilateral sensorineural hearing loss with EVA and an iodine defect that can lead to 
thyroid goiter. Currently, it is known that EVA is associated with variants in the 
SLC26A4 gene and is a penetrant feature of SLC26A4-related HL. Predominant 
mutations in these genes differ significantly across populations. For instance, predominant SLC26A4 mutations differ among populations, including p.T416P and 
c.1001G>A in Caucasians, p.H723R in Japanese and Koreans, and c.919-2A>G 
in Han Taiwanese and Han Chinese. On the other hand, there has been no study 
of hearing loss related to SLC26A4 gene variants among Mongolians, which is the 
basis of our research.
		                        		
		                        			Aim:
		                        			We aimed to identify the characteristics of the SLC26A4 gene variants in 
Mongolian people with Enlarged vestibular aqueduct and Mondini malformation.
		                        		
		                        			Materials and Methods:
		                        			In 2022-2024, We included 13 people with hearing loss 
and enlarged vestibular aqueduct, incomplete cochlea (1.5 turns of the cochlea 
with cystic apex- incomplete partition type II- Mondini malformation) were examined by CT scan of the temporal bone in our study. WES (Whole exome sequencing) analysis was performed in the Genetics genetic-laboratory of the National 
Taiwan University Hospital.
		                        		
		                        			Results:
		                        			Genetic analysis revealed 26 confirmed pathogenic variants of bi-allelic 
SLC26A4 gene of 8 different types in 13 cases, and c.919-2A>G variant was dominant with 46% (12/26) in allele frequency, and c.2027T>A (p.L676Q) variant 19% 
(5/26), c.1318A>T(p.K440X) variant 11% (3/26), c.1229C>T (p.T410M) variant 8% 
(2/26) ) , c.716T>A (p.V239D), c.281C>T (p.T94I), c.1546dupC, and c.1975G>C 
(p.V659L) variants were each 4% (1/26)- revealed. Two male children, 11 years 
old (SLC26A4: c.919-2A>G) and 7 years old (SLC26A4: c.919-2A>G:, SLC26A4: 
c.2027T>A (p.L676Q))had history of born normal hearing and progressive hearing 
loss.
		                        		
		                        			Conclusions
		                        			1. 26 variants of bi-allelic SLC26A4 gene mutation were detected 
in Mongolian people with EVA and Mondini malformation, and c.919-2A>G was 
the most dominant allele variant, and rare variants such as c.1546dupC, c.716T>A 
(p.V239D) were detected.
2. Our study shows that whole-exome sequencing (WES) can identify gene 
mutations that are not detected by polymerase chain reaction (PCR) or NGS analysis.
		                        		
		                        		
		                        		
		                        	
3.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
		                        		
		                        			 Background:
		                        			and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking. 
		                        		
		                        			Methods:
		                        			This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance. 
		                        		
		                        			Results:
		                        			Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal. 
		                        		
		                        			Conclusions
		                        			The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy. 
		                        		
		                        		
		                        		
		                        	
4.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
		                        		
		                        			 Background:
		                        			and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking. 
		                        		
		                        			Methods:
		                        			This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance. 
		                        		
		                        			Results:
		                        			Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal. 
		                        		
		                        			Conclusions
		                        			The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy. 
		                        		
		                        		
		                        		
		                        	
5.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
		                        		
		                        			 Background:
		                        			and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking. 
		                        		
		                        			Methods:
		                        			This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance. 
		                        		
		                        			Results:
		                        			Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal. 
		                        		
		                        			Conclusions
		                        			The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy. 
		                        		
		                        		
		                        		
		                        	
6.Taiwan Association for the Study of the Liver-Taiwan Society of Cardiology Taiwan position statement for the management of metabolic dysfunction- associated fatty liver disease and cardiovascular diseases
Pin-Nan CHENG ; Wen-Jone CHEN ; Charles Jia-Yin HOU ; Chih-Lin LIN ; Ming-Ling CHANG ; Chia-Chi WANG ; Wei-Ting CHANG ; Chao-Yung WANG ; Chun-Yen LIN ; Chung-Lieh HUNG ; Cheng-Yuan PENG ; Ming-Lung YU ; Ting-Hsing CHAO ; Jee-Fu HUANG ; Yi-Hsiang HUANG ; Chi-Yi CHEN ; Chern-En CHIANG ; Han-Chieh LIN ; Yi-Heng LI ; Tsung-Hsien LIN ; Jia-Horng KAO ; Tzung-Dau WANG ; Ping-Yen LIU ; Yen-Wen WU ; Chun-Jen LIU
Clinical and Molecular Hepatology 2024;30(1):16-36
		                        		
		                        			
		                        			 Metabolic dysfunction-associated fatty liver disease (MAFLD) is an increasingly common liver disease worldwide. MAFLD is diagnosed based on the presence of steatosis on images, histological findings, or serum marker levels as well as the presence of at least one of the three metabolic features: overweight/obesity, type 2 diabetes mellitus, and metabolic risk factors. MAFLD is not only a liver disease but also a factor contributing to or related to cardiovascular diseases (CVD), which is the major etiology responsible for morbidity and mortality in patients with MAFLD. Hence, understanding the association between MAFLD and CVD, surveillance and risk stratification of MAFLD in patients with CVD, and assessment of the current status of MAFLD management are urgent requirements for both hepatologists and cardiologists. This Taiwan position statement reviews the literature and provides suggestions regarding the epidemiology, etiology, risk factors, risk stratification, nonpharmacological interventions, and potential drug treatments of MAFLD, focusing on its association with CVD. 
		                        		
		                        		
		                        		
		                        	
7.Artificial intelligence predicts direct-acting antivirals failure among hepatitis C virus patients: A nationwide hepatitis C virus registry program
Ming-Ying LU ; Chung-Feng HUANG ; Chao-Hung HUNG ; Chi‐Ming TAI ; Lein-Ray MO ; Hsing-Tao KUO ; Kuo-Chih TSENG ; Ching-Chu LO ; Ming-Jong BAIR ; Szu-Jen WANG ; Jee-Fu HUANG ; Ming-Lun YEH ; Chun-Ting CHEN ; Ming-Chang TSAI ; Chien-Wei HUANG ; Pei-Lun LEE ; Tzeng-Hue YANG ; Yi-Hsiang HUANG ; Lee-Won CHONG ; Chien-Lin CHEN ; Chi-Chieh YANG ; Sheng‐Shun YANG ; Pin-Nan CHENG ; Tsai-Yuan HSIEH ; Jui-Ting HU ; Wen-Chih WU ; Chien-Yu CHENG ; Guei-Ying CHEN ; Guo-Xiong ZHOU ; Wei-Lun TSAI ; Chien-Neng KAO ; Chih-Lang LIN ; Chia-Chi WANG ; Ta-Ya LIN ; Chih‐Lin LIN ; Wei-Wen SU ; Tzong-Hsi LEE ; Te-Sheng CHANG ; Chun-Jen LIU ; Chia-Yen DAI ; Jia-Horng KAO ; Han-Chieh LIN ; Wan-Long CHUANG ; Cheng-Yuan PENG ; Chun-Wei- TSAI ; Chi-Yi CHEN ; Ming-Lung YU ;
Clinical and Molecular Hepatology 2024;30(1):64-79
		                        		
		                        			 Background/Aims:
		                        			Despite the high efficacy of direct-acting antivirals (DAAs), approximately 1–3% of hepatitis C virus (HCV) patients fail to achieve a sustained virological response. We conducted a nationwide study to investigate risk factors associated with DAA treatment failure. Machine-learning algorithms have been applied to discriminate subjects who may fail to respond to DAA therapy. 
		                        		
		                        			Methods:
		                        			We analyzed the Taiwan HCV Registry Program database to explore predictors of DAA failure in HCV patients. Fifty-five host and virological features were assessed using multivariate logistic regression, decision tree, random forest, eXtreme Gradient Boosting (XGBoost), and artificial neural network. The primary outcome was undetectable HCV RNA at 12 weeks after the end of treatment.  
		                        		
		                        			Results:
		                        			The training (n=23,955) and validation (n=10,346) datasets had similar baseline demographics, with an overall DAA failure rate of 1.6% (n=538). Multivariate logistic regression analysis revealed that liver cirrhosis, hepatocellular carcinoma, poor DAA adherence, and higher hemoglobin A1c were significantly associated with virological failure. XGBoost outperformed the other algorithms and logistic regression models, with an area under the receiver operating characteristic curve of 1.000 in the training dataset and 0.803 in the validation dataset. The top five predictors of treatment failure were HCV RNA, body mass index, α-fetoprotein, platelets, and FIB-4 index. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the XGBoost model (cutoff value=0.5) were 99.5%, 69.7%, 99.9%, 97.4%, and 99.5%, respectively, for the entire dataset. 
		                        		
		                        			Conclusions
		                        			Machine learning algorithms effectively provide risk stratification for DAA failure and additional information on the factors associated with DAA failure. 
		                        		
		                        		
		                        		
		                        	
8.Metformin and statins reduce hepatocellular carcinoma risk in chronic hepatitis C patients with failed antiviral therapy
Pei-Chien TSAI ; Chung-Feng HUANG ; Ming-Lun YEH ; Meng-Hsuan HSIEH ; Hsing-Tao KUO ; Chao-Hung HUNG ; Kuo-Chih TSENG ; Hsueh-Chou LAI ; Cheng-Yuan PENG ; Jing-Houng WANG ; Jyh-Jou CHEN ; Pei-Lun LEE ; Rong-Nan CHIEN ; Chi-Chieh YANG ; Gin-Ho LO ; Jia-Horng KAO ; Chun-Jen LIU ; Chen-Hua LIU ; Sheng-Lei YAN ; Chun-Yen LIN ; Wei-Wen SU ; Cheng-Hsin CHU ; Chih-Jen CHEN ; Shui-Yi TUNG ; Chi‐Ming TAI ; Chih-Wen LIN ; Ching-Chu LO ; Pin-Nan CHENG ; Yen-Cheng CHIU ; Chia-Chi WANG ; Jin-Shiung CHENG ; Wei-Lun TSAI ; Han-Chieh LIN ; Yi-Hsiang HUANG ; Chi-Yi CHEN ; Jee-Fu HUANG ; Chia-Yen DAI ; Wan-Long CHUNG ; Ming-Jong BAIR ; Ming-Lung YU ;
Clinical and Molecular Hepatology 2024;30(3):468-486
		                        		
		                        			 Background/Aims:
		                        			Chronic hepatitis C (CHC) patients who failed antiviral therapy are at increased risk for hepatocellular carcinoma (HCC). This study assessed the potential role of metformin and statins, medications for diabetes mellitus (DM) and hyperlipidemia (HLP), in reducing HCC risk among these patients. 
		                        		
		                        			Methods:
		                        			We included CHC patients from the T-COACH study who failed antiviral therapy. We tracked the onset of HCC 1.5 years post-therapy by linking to Taiwan’s cancer registry data from 2003 to 2019. We accounted for death and liver transplantation as competing risks and employed Gray’s cumulative incidence and Cox subdistribution hazards models to analyze HCC development. 
		                        		
		                        			Results:
		                        			Out of 2,779 patients, 480 (17.3%) developed HCC post-therapy. DM patients not using metformin had a 51% increased risk of HCC compared to non-DM patients, while HLP patients on statins had a 50% reduced risk compared to those without HLP. The 5-year HCC incidence was significantly higher for metformin non-users (16.5%) versus non-DM patients (11.3%; adjusted sub-distribution hazard ratio [aSHR]=1.51; P=0.007) and metformin users (3.1%; aSHR=1.59; P=0.022). Statin use in HLP patients correlated with a lower HCC risk (3.8%) compared to non-HLP patients (12.5%; aSHR=0.50; P<0.001). Notably, the increased HCC risk associated with non-use of metformin was primarily seen in non-cirrhotic patients, whereas statins decreased HCC risk in both cirrhotic and non-cirrhotic patients. 
		                        		
		                        			Conclusions
		                        			Metformin and statins may have a chemopreventive effect against HCC in CHC patients who failed antiviral therapy. These results support the need for personalized preventive strategies in managing HCC risk. 
		                        		
		                        		
		                        		
		                        	
9.Association Between Exposure to Particulate Matter and the Incidence of Parkinson’s Disease: A Nationwide Cohort Study in Taiwan
Ting-Bin CHEN ; Chih-Sung LIANG ; Ching-Mao CHANG ; Cheng-Chia YANG ; Hwa-Lung YU ; Yuh-Shen WU ; Winn-Jung HUANG ; I-Ju TSAI ; Yuan-Horng YAN ; Cheng-Yu WEI ; Chun-Pai YANG
Journal of Movement Disorders 2024;17(3):313-321
		                        		
		                        			 Objective:
		                        			Emerging evidence suggests that air pollution exposure may increase the risk of Parkinson’s disease (PD). We aimed to investigate the association between exposure to fine particulate matter (PM2.5) and the risk of incident PD nationwide. 
		                        		
		                        			Methods:
		                        			We utilized data from the Taiwan National Health Insurance Research Database, which is spatiotemporally linked with air quality data from the Taiwan Environmental Protection Administration website. The study population consisted of participants who were followed from the index date (January 1, 2005) until the occurrence of PD or the end of the study period (December 31, 2017). Participants who were diagnosed with PD before the index date were excluded. To evaluate the association between exposure to PM2.5 and incident PD risk, we employed Cox regression to estimate the hazard ratio and 95% confidence interval (CI). 
		                        		
		                        			Results:
		                        			A total of 454,583 participants were included, with a mean (standard deviation) age of 63.1 (9.9) years and a male proportion of 50%. Over a mean follow-up period of 11.1 (3.6) years, 4% of the participants (n = 18,862) developed PD. We observed a significant positive association between PM2.5 exposure and the risk of PD, with a hazard ratio of 1.22 (95% CI, 1.20–1.23) per interquartile range increase in exposure (10.17 μg/m3) when adjusting for both SO2 and NO2. 
		                        		
		                        			Conclusion
		                        			We provide further evidence of an association between PM2.5 exposure and the risk of PD. These findings underscore the urgent need for public health policies aimed at reducing ambient air pollution and its potential impact on PD. 
		                        		
		                        		
		                        		
		                        	
10.Asia-Pacific consensus on long-term and sequential therapy for osteoporosis
Ta-Wei TAI ; Hsuan-Yu CHEN ; Chien-An SHIH ; Chun-Feng HUANG ; Eugene MCCLOSKEY ; Joon-Kiong LEE ; Swan Sim YEAP ; Ching-Lung CHEUNG ; Natthinee CHARATCHAROENWITTHAYA ; Unnop JAISAMRARN ; Vilai KUPTNIRATSAIKUL ; Rong-Sen YANG ; Sung-Yen LIN ; Akira TAGUCHI ; Satoshi MORI ; Julie LI-YU ; Seng Bin ANG ; Ding-Cheng CHAN ; Wai Sin CHAN ; Hou NG ; Jung-Fu CHEN ; Shih-Te TU ; Hai-Hua CHUANG ; Yin-Fan CHANG ; Fang-Ping CHEN ; Keh-Sung TSAI ; Peter R. EBELING ; Fernando MARIN ; Francisco Javier Nistal RODRÍGUEZ ; Huipeng SHI ; Kyu Ri HWANG ; Kwang-Kyoun KIM ; Yoon-Sok CHUNG ; Ian R. REID ; Manju CHANDRAN ; Serge FERRARI ; E Michael LEWIECKI ; Fen Lee HEW ; Lan T. HO-PHAM ; Tuan Van NGUYEN ; Van Hy NGUYEN ; Sarath LEKAMWASAM ; Dipendra PANDEY ; Sanjay BHADADA ; Chung-Hwan CHEN ; Jawl-Shan HWANG ; Chih-Hsing WU
Osteoporosis and Sarcopenia 2024;10(1):3-10
		                        		
		                        			 Objectives:
		                        			This study aimed to present the Asia-Pacific consensus on long-term and sequential therapy for osteoporosis, offering evidence-based recommendations for the effective management of this chronic condition.The primary focus is on achieving optimal fracture prevention through a comprehensive, individualized approach. 
		                        		
		                        			Methods:
		                        			A panel of experts convened to develop consensus statements by synthesizing the current literature and leveraging clinical expertise. The review encompassed long-term anti-osteoporosis medication goals, first-line treatments for individuals at very high fracture risk, and the strategic integration of anabolic and anti resorptive agents in sequential therapy approaches. 
		                        		
		                        			Results:
		                        			The panelists reached a consensus on 12 statements. Key recommendations included advocating for anabolic agents as the first-line treatment for individuals at very high fracture risk and transitioning to anti resorptive agents following the completion of anabolic therapy. Anabolic therapy remains an option for in dividuals experiencing new fractures or persistent high fracture risk despite antiresorptive treatment. In cases of inadequate response, the consensus recommended considering a switch to more potent medications. The consensus also addressed the management of medication-related complications, proposing alternatives instead of discontinuation of treatment. 
		                        		
		                        			Conclusions
		                        			This consensus provides a comprehensive, cost-effective strategy for fracture prevention with an emphasis on shared decision-making and the incorporation of country-specific case management systems, such as fracture liaison services. It serves as a valuable guide for healthcare professionals in the Asia-Pacific region, contributing to the ongoing evolution of osteoporosis management. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail