1.Visual acuity and corrected visual acuity of children and adolescents in Shanghai City
Chinese Journal of School Health 2025;46(1):24-28
Objective:
To investigate the visual acuity and correction conditions of children and adolescents in Shanghai, so as to provide a scientific basis for developing intervention measures to prevent myopia and protect vision among children and adolescents.
Methods:
From October to December 2022, a stratified cluster random sampling survey was conducted, involving 47 034 students from 16 municipal districts in Shanghai, covering kindergartens (≥5 years), primary schools, middle schools, general high schools and vocational high schools. According to the Guidelines for Screening Refractive Errors in Primary and Secondary School Students, the Standard Logarithmic Visual acuity Chart was used to examine naked vision and corrected vision of students, and general information was collected. The distribution and severity of visual impairment in different age groups were analyzed, and χ 2 tests and multivariate Logistic regression were used to explore factors associated with visual impairment.
Results:
The detection rate of visual impairment among children and adolescents was 76.2%, with a higher rate among females (78.8%) than males ( 73.8 %), higher among Han ethic students ( 76.2 %) than minority students (71.2%), and higher among urban students (76.7%) than suburban students (75.8%), all with statistically significant differences ( χ 2=162.6, 10.4, 5.5, P <0.05). The rate of visual impairment initially decreased and then increased with age, reaching its lowest at age 7 (53.8%) and peaking at age 17 (89.6%) ( χ 2 trend = 3 467.0 , P <0.05). Severe visual impairment accounted for the majority, at 56.6%, and there was a positive correlation between the severity of visual impairment and age among children and adolescents ( r =0.45, P <0.05). Multivariate Logistic regression showed that age, BMI, gender, ethnicity and urban suburban status were associated with visual impairment ( OR =1.18, 1.01, 1.38 , 0.79, 0.88, P <0.05). Among those with moderate to severe visual impairment, the rate of spectacle lens usage was 62.8%, yet only 44.8 % of those who used spectacle lens had fully corrected visual acuity. Females (64.9%) had higher spectacle lens usage rates than males (60.6%), and general high school students had the highest spectacle lens usage (83.9%), and there were statistically significant differences in gender and academic stages ( χ 2=57.7, 4 592.8, P <0.05).
Conclusions
The rate of spectacle lens usage among students with moderate to severe visual impairment is relatively low, and even after using spectacle lens, some students still do not achieve adequate corrected visual acuity. Efforts should focus on enhancing public awareness of eye health and refractive correction and improving the accessibility of related health services.
2.Target of neohesperidin in treatment of osteoporosis and its effect on osteogenic differentiation of bone marrow mesenchymal stem cells
Zhenyu ZHANG ; Qiujian LIANG ; Jun YANG ; Xiangyu WEI ; Jie JIANG ; Linke HUANG ; Zhen TAN
Chinese Journal of Tissue Engineering Research 2025;29(7):1437-1447
BACKGROUND:Previous studies have found that neohesperidin can delay bone loss in ovariectomized mice and has the potential to treat osteoporosis,but its specific mechanism of action remains to be explored. OBJECTIVE:To explore the key targets and possible mechanisms of neohesperidin in the treatment of osteoporosis based on bioinformatics and cell experiments in vitro. METHODS:The gene expression dataset related to osteoporosis was obtained from GEO database,and the differentially expressed genes were screened and analyzed in R language.The osteoporosis-related targets were screened from GeneCards and DisGeNET databases,and the neohesperidin-related targets were screened from ChEMBL and PubChem databases,and the common targets were obtained by intersection of the three.The String database was used to construct the PPI network of intersection genes,and the key targets were screened.The DAVID database was used for GO and KEGG enrichment analysis.The AutoDock software was used to verify the molecular docking between the neohesperidin and the target protein.The effect of neohesperidin on osteogenic differentiation of C57 mouse bone marrow mesenchymal stem cells was detected.Complete medium was used as blank control group;osteogenic induction medium was used as the control group;and osteogenic induction medium containing different concentrations of neohesperidin(25,50 μmol/L)was used as experimental group.The expression of alkaline phosphatase,the degree of mineralization,the expression of osteogenic-related genes and target genes during osteogenic differentiation of cells were measured at corresponding time points. RESULTS AND CONCLUSION:(1)9 253 differentially expressed genes,2 161 osteoporosis-related targets,and 326 neohesperidin-related targets were screened.There were 53 common targets among the three.All 53 genes were up-regulated in osteoporosis samples.The PPI network screened the target gene PRKACA of research significance.GO function and KEGG pathway enrichment analysis showed that neohesperidin's treatment of osteoporosis through PRKACA target mainly depended on biological processes such as protein phosphorylation and protein autophosphorylation,acting on endocrine resistance,proteoglycan in cancer,and estrogen signaling pathway to play a therapeutic role.Molecular docking results showed that neohesperidin had a certain binding ability to the protein corresponding to the target PRKACA.(2)The results of alkaline phosphatase staining showed that neohesperidin could promote the expression of alkaline phosphatase in the early stage of osteogenic differentiation of mesenchymal stem cells.Alizarin red staining showed that neohesperidin could promote the mineralization of osteogenic differentiation of mesenchymal stem cells.RT-qPCR results showed that neohesperidin could increase the mRNA expression of alkaline phosphatase,PRKACA,and osteocalcin.(3)These results indicate that neohesperidin may promote osteogenic differentiation through PRKACA target on the estrogen signaling pathway to prevent and treat osteoporosis.
3.Chemical consitituents and hypoglycemic activity of Qinhuai No. 1 Rehmannia glutinosa
Meng YANG ; Zhi-you HAO ; Xiao-lan WANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Shi-qi ZHOU ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2025;60(1):205-210
Eight compounds were isolated and purified from the ethyl acetate part of 70% acetone extract of
4.Clinical Safety Monitoring of 3 035 Cases of Juvenile Feilike Mixture After Marketing in Hospital
Jian ZHU ; Zhong WANG ; Jing LIU ; Jun LIU ; Wei YANG ; Yanan YU ; Hongli WU ; Sha ZHOU ; Zhiyu PAN ; Guang WU ; Mengmeng WU ; Zhiwei JING
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):194-200
ObjectiveTo explore the clinical safety of Feilike Mixture (FLK) in the real world. MethodsThe safety of all children who received FLK from 29 institutions in 12 provinces between January 21,2021 and December 25,2021 was evaluated through prospective centralized surveillance and a nested case control study. ResultsA total of 3 035 juveniles were included. There were 29 research centers involved,which are distributed across 12 provinces,including one traditional Chinese medicine (TCM) hospital and 28 general hospitals. The average age among the juveniles was (4.77±3.56) years old,and the average weight was (21.81±12.97) kg. Among them,119 cases (3.92%) of juveniles had a history of allergies. Acute bronchitis was the main diagnosis for juveniles,with 1 656 cases (54.46%). FLK was first used in 2 016 cases (66.43%),and 142 juvenile patients had special dosages,accounting for 4.68%. Among them,92 adverse drug reactions (ADRs) occurred,including 73 cases of gastrointestinal system disorders,10 cases of metabolic and nutritional disorders,eight cases of skin and subcutaneous tissue diseases,two cases of vascular and lymphatic disorders,and one case of systemic diseases and various reactions at the administration site. The manifestations of ADRs were mainly diarrhea,stool discoloration,and vomiting,and no serious ADRs occurred. The results of multi-factor analysis indicated that special dosages (the use of FLK)[odds ratio (OR) of 2.642, 95% confidence interval (CI) of 1.105-6.323],combined administration: spleen aminopeptide (OR of 4.978, 95%CI of 1.200-20.655),and reason for combined administration: anti-infection (OR of 1.814, 95%CI of 1.071-3.075) were the risk factors for ADRs caused by FLK. Conclusion92 ADRs occurred among 3 035 juveniles using FLK. The incidence of ADRs caused by FLK was 3.03%,and the severity was mainly mild or moderate. Generally,the prognosis was favorable after symptomatic treatment such as drug withdrawal or dosage reduction,suggesting that FLK has good clinical safety.
5.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
6.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
7.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
8.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
9.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
10.Four Weeks of HIIT Modulates Lactate-mediated Synaptic Plasticity to Improve Depressive-like Behavior in CUMS Rats
Yu-Mei HAN ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Chun-Hui BAO ; Jun-Sheng TIAN ; Shi ZHOU ; Huan XIANG ; Yong-Hong YANG
Progress in Biochemistry and Biophysics 2025;52(6):1499-1510
ObjectiveThis study aimed to investigate the effects of 4-week high-intensity interval training (HIIT) on synaptic plasticity in the prefrontal cortex (PFC) of rats exposed to chronic unpredictable mild stress (CUMS), and to explore its potential mechanisms. MethodsA total of 48 male Sprague-Dawley rats were randomly divided into 4 groups: control (C), model (M), control plus HIIT (HC), and model plus HIIT (HM). Rats in groups M and HM underwent 8 weeks of CUMS to establish depression-like behaviors, while groups HC and HM received HIIT intervention beginning from the 5th week for 4 consecutive weeks. The HIIT protocol consisted of repeated intervals of 3 min at high speed (85%-90% maximal training speed, Smax) alternated with one minute at low speed (50%-55% Smax), with 3 to 5 sets per session, conducted 5 d per week. Behavioral assessments and tail-vein blood lactate levels were measured at the end of the 4th and 8th weeks. After the intervention, rat PFC tissues were collected for Golgi staining to analyze synaptic morphology. Enzyme-linked immunosorbent assays (ELISA) were employed to detect brain-derived neurotrophic factor (BDNF), monocarboxylate transporter 1 (MCT1), lactate, and glutamate levels in the PFC, as well as serotonin (5-HT) levels in serum. Additionally, Western blot analysis was conducted to quantify the expression of synaptic plasticity-related proteins, including c-Fos, activity-regulated cytoskeleton-associated protein (Arc), and N-methyl-D-aspartate receptor 1 (NMDAR1). ResultsCompared to the control group (C), the CUMS-exposed rats (group M) exhibited significant reductions in sucrose preference rates, number of grid crossings, frequency of upright postures, and entries into and duration spent in open arms of the elevated plus maze, indicating marked depressive-like behaviors. Additionally, the group M showed significantly reduced dendritic spine density in the PFC, along with elevated levels of c-Fos, Arc, NMDAR1 protein expression, and increased concentrations of lactate and glutamate. Conversely, BDNF and MCT1 contents in the PFC and 5-HT levels in serum were significantly decreased. Following HIIT intervention, rats in the group HM displayed considerable improvement in behavioral indicators compared with the group M, accompanied by significant elevations in PFC MCT1 and lactate concentrations. Furthermore, HIIT notably normalized the expression levels of c-Fos, Arc, NMDAR1, as well as glutamate and BDNF contents in the PFC. Synaptic spine density also exhibited significant recovery. ConclusionFour weeks of HIIT intervention may alleviate depressive-like behaviors in CUMS rats by increasing lactate levels and reducing glutamate concentration in the PFC, thereby downregulating the overexpression of NMDAR, attenuating excitotoxicity, and enhancing synaptic plasticity.


Result Analysis
Print
Save
E-mail