1.Eficacy and safety of washed red blood cells and white suspended red blood cells in the treatment of autoimmune hemolytic anemia: a meta-analysis
Wenda FU ; Hua WEI ; Dan LI ; Longfei YANG
Chinese Journal of Blood Transfusion 2025;38(2):284-290
[Objective] To systematically evaluate the therapeutic effect of washed red blood cells and white suspended red blood cells on patients with autoimmune hemolytic anemia, and to provide reference for their clinical treatment. [Methods] CNKI, Wanfang, VIP, PubMed, Embase, Cochrane Library and other databases from the establishment of the database to August 2024 were searched, including the randomized controlled trials of washed red blood cells and white suspended red blood cells in the treatment of autoimmune hemolytic anemia that met the requirements. After literature screening, data extraction and quality evaluation, meta-analysis was performed using Review manager 5.3 software and Stata 15.1 software to analyze the therapeutic effect of blood transfusion in the primary outcome, hematological indicators (Hb, Ret, RBC, and TBIL) of the two groups after blood transfusion and the occurrence of adverse blood transfusion reactions. [Results] After screening, 10 literatures meeting the criteria were retrieved, and a total of 753 patients with autoimmune hemolytic anemia were treated with washed red blood cell infusion in the observation group and white suspended red blood cell infusion in the control group. Meta-analysis suggested that there was no significant difference in the therapeutic effect of transfusion between patients who received washed red cells and those received white suspended red cells[SMD=1.16, 95%CI (0.87, 1.54), P>0.05]. The hematological indexes of the two groups after transfusion (Hb [SMD=0.04, 95%CI (-0.14, 0.22), P>0.05]、Ret[SMD=-0.15, 95%CI (-0.34, 0.03), P>0.05]、RBC[SMD=0.08, 95%CI (-0.10, 0.26), P>0.05] and TBIL [SMD=-0.02, 95%CI (-0.18, 0.15), P>0.05]) and the incidence of transfusion adverse reactions[SMD=0.8, 95%CI (0.47, 1.39), P>0.05] were not significantly different. [Conclusion] Based on the current study, the efficacy and safety of infusion of washed red blood cells and white suspended red blood cells are comparable in patients with autoimmune hemolytic anemia. However, considering the simple preparation process of washed red blood cells and the low price, infusion of washed red blood cells is recommended for patients with autoimmune hemolytic anemia.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
7.Correlations Between Traditional Chinese Medicine Syndromes and Lipid Metabolism in 341 Children with Wilson Disease
Han WANG ; Wenming YANG ; Daiping HUA ; Lanting SUN ; Qiaoyu XUAN ; Wei DONG ; Xin YIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):140-146
ObjectiveTo study the correlations between traditional Chinese medicine (TCM) syndromes and lipid metabolism in children with Wilson disease (WD). MethodsClinical data and lipid metabolism indicators [total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), and lipoprotein a (Lpa)] were retrospectively collected from 341 children with WD. The clinical data were compared among WD children with different syndromes, and the correlations between TCM syndromes and lipid metabolism in children with WD were analyzed. Least absolute shrinkage and selection operator (LASSO) regression was used for variable screening, and unordered multinomial Logistic regression was employed to analyze the effects of lipid metabolism indicators on TCM syndromes. ResultsThe 341 children with WD included 121 (35.5%) children with the dampness-heat accumulation syndrome, 103 (30.2%) children with the liver-kidney Yin deficiency syndrome, 68 children with the combined phlegm and stasis syndrome, 29 children with the spleen-kidney Yang deficiency syndrome, and 20 children with the liver qi stagnation syndrome. The liver-kidney Yin deficiency syndrome, combined phlegm and stasis syndrome, and spleen-kidney Yang deficiency syndrome had correlations with the levels of lipid metabolism indicators (P<0.05). Lipid metabolism abnormalities occurred in 232 (68.0%) children, including hypertriglyceridemia (108), hypercholesterolemia (23), mixed hyperlipidemia (67), lipoprotein a-hyperlipoproteinemia (12), and hypo-HDL-cholesterolemia (22). The percentages of hypertriglyceridemia and hypo-HDL-cholesterolemia varied among children with different TCM syndromes (P<0.05). Correlations existed for the liver-kidney Yin deficiency syndrome with TG, TC, and HDL-C, the combined phlegm and stasis syndrome with TG, the spleen-kidney Yang deficiency syndrome with TG, TC, and LDL-C, and the liver Qi stagnation syndrome with TC and LDL-C (P<0.05, P<0.01). ConclusionThe TCM syndromes of children with WD are dominated by the dampness-heat accumulation syndrome and the liver-kidney Yin deficiency syndrome, and dyslipidemia in the children with WD is dominated by hypertriglyceridemia and mixed hyperlipidemia. There are different correlations between TCM syndromes and lipid metabolism indicators, among which TG, TC, LDL-C, and HDL-C could assist in identifying TCM syndromes in children with WD.
8.Threshold of kurtosis on occupational hearing loss associated with non-steady noise
Yang LI ; Haiying LIU ; Linjie WU ; Jinzhe LI ; Jiarui XIN ; Hua ZOU ; Xin SUN ; Wei QIU ; Changyan YU ; Meibian ZHANG
Journal of Environmental and Occupational Medicine 2025;42(7):779-785
Background Kurtosis reflecting noise's temporal structure is an effective metric for evaluating noise-induced hearing loss (NIHL), and its threshold is still unclear. Objective To explore the energy range of kurtosis and the threshold of NIHL induced by kurtosis in this energy rangeMethods Using cross-sectional design,
9.Roles of A- and C-weighted kurtosis adjustment for equivalent sound level in evaluating occupational hearing loss
Haiying LIU ; Linjie WU ; Yang LI ; Jinzhe LI ; Jiarui XIN ; Hua ZOU ; Wei QIU ; Tong SHEN ; Meibian ZHANG
Journal of Environmental and Occupational Medicine 2025;42(7):793-799
Background Temporal kurtosis (without frequency weighting, i.e., Z-weighted kurtosis) can evaluate noise-induced hearing loss (NIHL). However, few studies have considered the function of frequency weighting (A- or C-weighted) kurtosis on NIHL. Objective To study the significance of A- and C-weighted kurtosis adjustment for equivalent sound level (L'EX,8 h) in evaluating occupational hearing loss. Methods A cross-sectional survey was used to select 973 noise-exposed workers in seven industries as the subjects. The noise exposure of all workers was assessed by distributions of A-, C-, and Z-weighted kurtosis (e.g., KA, KC, and KZ) and respective adjusted equivalent sound level (e.g., L'EX,8 h-KA, L'EX,8 h-KC, and L'EX,8 h-KZ). The significance of A- and C-weighted kurtosis in evaluating NIHL was evaluated by correlations between three types of L'EX,8 h and NIHL, and improvement of noise-induced permanent threshold shift (NIPTS) underestimation predicted by the ISO prediction model (Acoustics—Estimation of noise-induced hearing loss, ISO 1999-2013). Results The median KA, KC, and KZ were 68.33, 28.22, and 19.82, respectively. The binary logistic regression showed that LEX, 8 h-KA, LEX, 8 h-KC, and L'EX, 8 h-KZ were risk factors for NIHL (OR>1, P<0.001). The receiver operating characteristic (ROC) curve showed that when the outcome variable was noise-induced hearing impairment (NIHI), the areas under the curves corresponding to L'EX,8 h-KA, L'EX,8 h-KC, and L'EX,8 h-KZ were 0.625, 0.628, and 0.625, respectively. When the outcome variable was high-frequency noise-induced hearing loss (HFNIHL), the areas under the curves corresponding to L'EX,8 h-KA, L'EX, 8 h-KC, and L'EX,8 h-KZ were 0.624, 0.623, and 0.622, respectively (P<0.05). The order of underestimation improvement values predicted by L'EX,8 h for NIPTS1234 was: L'EX,8 h-KA (4.68 dB HL)>L'EX,8 h-KC (4.38 dB HL)>L'EX,8 h-KZ (4.28 dB HL) (P<0.001). The order of underestimation improvement values predicted by L'EX,8 h-K for NIPTS346 was: L'EX,8 h-KA (7.20 dB HL)>L'EX,8 h-KC (6.83 dB HL)>L'EX,8 h-KZ (6.71 dB HL) (P<0.001). Conclusion The adjustment of A- and C-weighted kurtosis to equivalent sound level LEX,8 h can effectively improve the accuracy of the ISO 1999 prediction model in NIPTS prediction, and compared with the C-weighted, the A-weighted kurtosis can improve the result of the ISO 1999 prediction model in terms of underestimating NIPTS.
10.A preliminary study on developing statistical distribution table of hearing threshold deviation for otologically normal Chinese adults
Linjie WU ; Yang LI ; Haiying LIU ; Anke ZENG ; Jinzhe LI ; Wei QIU ; Hua ZOU ; Meng YE ; Meibian ZHANG
Journal of Environmental and Occupational Medicine 2025;42(7):800-807
background Current assessment of noise-induced hearing loss relies on the hearing threshold statistical distribution table of ISO 7029-2017 standard (ISO 7029), which is based on foreign population data and lacks a hearing threshold distribution table derived from pure-tone audiometry data of the Chinese population, hindering accurate evaluation of hearing loss in this group. Objective To establish a statistical distribution table of hearing threshold level (HTL) for otologically normal Chinese adults and to provide a scientific basis for revising the diagnostic criteria of occupational noise-induced deafness in China. Methods A total of

Result Analysis
Print
Save
E-mail