1.Construction of blood quality monitoring indicator system in blood banks of Shandong
Qun LIU ; Xuemei LI ; Yuqing WU ; Zhiquan RONG ; Zhongsi YANG ; Zhe SONG ; Shuhong ZHAO ; Lin ZHU ; Shuli SUN ; Wei ZHANG ; Jinyu HAN ; Xiaojuan FAN ; Hui YE ; Mingming QIAO ; Hua SHEN ; Dunzhu GONGJUE ; Yunlong ZHUANG
Chinese Journal of Blood Transfusion 2024;37(3):249-257
【Objective】 To establish a blood quality monitoring indicator system, in order to continuously improve blood quality and standardized management. 【Methods】 Based on the research of literature and standards, and guided by the key control points of blood collection and supply process, the blood quality monitoring indicator system was developed. Through two rounds of Delphi expert consultation, the indicator content was further revised and improved according to expert opinions after six months of trial implementation. The indicator weight was calculated by questionnaire and analytic hierarchy process. 【Results】 A blood quality monitoring indicator system covering the whole process of blood collection and supply was constructed, including five primary indicators, namely blood donation service, blood component preparation, blood testing, blood supply and quality control, as well as 72 secondary indicators, including definitions, calculation formulas, etc. Two rounds of expert consultation and two rounds of feasibility study meeting were held to revise 17 items and the weight of each indicator was obtained through the analytic hierarchy process. After partial adjustments, a blood quality monitoring indicator system was formed. 【Conclusion】 A blood quality monitoring indicator system covering the whole process of blood collection and supply has been established for the first time, which can effectively evaluate the quality management level of blood banks and coordinate blood quality control activities of blood banks in Shandong like pieces in a chess game, thus improving the standardized management level
2.Application of quality monitoring indicators of blood testing in blood banks of Shandong province
Xuemei LI ; Weiwei ZHAI ; Zhongsi YANG ; Shuhong ZHAO ; Yuqing WU ; Qun LIU ; Zhe SONG ; Zhiquan RONG ; Shuli SUN ; Xiaojuan FAN ; Wei ZHANG ; Jinyu HAN ; Lin ZHU ; Xianwu AN ; Hui ZHANG ; Junxia REN ; Xuejing LI ; Chenxi YANG ; Bo ZHOU ; Haiyan HUANG ; Guangcai LIU ; Ping CHEN ; Hui YE ; Mingming QIAO ; Hua SHEN ; Dunzhu GONGJUE ; Yunlong ZHUANG
Chinese Journal of Blood Transfusion 2024;37(3):258-266
【Objective】 To objectively evaluate the quality control level of blood testing process in blood banks through quantitative monitoring and trend analysis, and to promote the homogenization level and standardized management of blood testing laboratories in blood banks. 【Methods】 A quality monitoring indicator system covering the whole process of blood collection and supply, including blood donation service, blood component preparation, blood testing, blood supply and quality control was established. The questionnaire Quality Monitoring Indicators for Blood Collection and Supply Process with clear definition of indicators and calculation formulas was distributed to 17 blood banks in Shandong province. Quality monitoring indicators of each blood bank from January to December 2022 were collected, and 31 indicators in terms of blood testing were analyzed using SPSS25.0 software. 【Results】 The proportion of unqualified serological tests in 17 blood bank laboratories was 55.84% for ALT, 13.63% for HBsAg, 5.08% for anti HCV, 5.62% for anti HIV, 18.18% for anti TP, and 1.65% for other factors (mainly sample quality). The detection unqualified rate and median were (1.23±0.57)% and 1.11%, respectively. The ALT unqualified rate and median were (0.74±0.53)% and 0.60%, respectively. The detection unqualified rate was positively correlated with ALT unqualified rate (r=0.974, P<0.05). The unqualified rate of HBsAg, anti HCV, anti HIV and anti TP was (0.15±0.09)%, (0.05±0.04)%, (0.06±0.03)% and (0.20±0.05)% respectively. The average unqualified rate, average hemolysis rate, average insufficient volume rate and the abnormal hematocrit rate of samples in 17 blood bank laboratories was 0.21‰, 0.08‰, 0.01‰ and 0.02‰ respectively. There were differences in the retest concordance rates of four HBsAg, anti HCV and anti HIV reagents, and three anti TP reagents among 17 blood bank laboratories (P<0.05). The usage rate of ELISA reagents was (114.56±3.30)%, the outage rate of ELISA was (10.23±7.05) ‰, and the out of range rate of ELISA was (0.90±1.17) ‰. There was no correlation between the out of range rate, outrage rate and usage rate (all P>0.05), while the outrage rate was positively correlated with the usage rate (r=0.592, P<0.05). A total of 443 HBV DNA positive samples were detected in all blood banks, with an unqualified rate of 3.78/10 000; 15 HCV RNA positive samples were detected, with an unqualified rate of 0.13/10 000; 5 HIV RNA positive samples were detected, with an unqualified rate of 0.04/10 000. The unqualified rate of NAT was (0.72±0.04)‰, the single NAT reaction rate [(0.39±0.02)‰] was positively correlated with the single HBV DNA reaction rate [ (0.36±0.02) ‰] (r=0.886, P<0.05). There was a difference in the discriminated reactive rate by individual NAT among three blood bank laboratories (C, F, H) (P<0.05). The median resolution rate of 17 blood station laboratories by minipool test was 36.36%, the median rate of invalid batch of NAT was 0.67%, and the median rate of invalid result of NAT was 0.07‰. The consistency rate of ELISA dual reagent detection results was (99.63±0.24)%, and the median length of equipment failure was 14 days. The error rate of blood type testing in blood collection department was 0.14‰. 【Conclusion】 The quality monitoring indicator system for blood testing process in Shandong can monitor potential risks before, during and after the experiment, and has good applicability, feasibility, and effectiveness, and can facilitate the continuous improvement of laboratory quality control level. The application of blood testing quality monitoring indicators will promote the homogenization and standardization of blood quality management in Shandong, and lay the foundation for future comprehensive evaluations of blood banks.
3.Application of quality control indicator system in blood banks of Shandong
Qun LIU ; Yuqing WU ; Xuemei LI ; Zhongsi YANG ; Zhe SONG ; Zhiquan RONG ; Shuhong ZHAO ; Lin ZHU ; Xiaojuan FAN ; Shuli SUN ; Wei ZHANG ; Jinyu HAN ; Xuejing LI ; Bo ZHOU ; Chenxi YANG ; Haiyan HUANG ; Guangcai LIU ; Kai CHEN ; Xianwu AN ; Hui ZHANG ; Junxia REN ; Hui YE ; Mingming QIAO ; Hua SHEN ; Dunzhu GONGJUE ; Yunlong ZHUANG
Chinese Journal of Blood Transfusion 2024;37(3):267-274
【Objective】 To establish an effective quality monitoring indicator system for blood quality control in blood banks, in order to analyze the quality control indicators for blood collection and supply, and evaluate blood quality control process, thus promoting continuous improvement and standardizing management of blood quality control in blood banks. 【Methods】 A quality monitoring indicator system covering the whole process of blood collection and supply, including blood donation services, component preparation, blood testing, blood supply and quality control was established. The Questionnaire of Quality Monitoring Indicators for Blood Collection and Supply Process was distributed to 17 blood banks in Shandong, which clarified the definition and calculation formula of indicators. The quality monitoring indicator data from January to December 2022 in each blood bank were collected, and 20 quality control indicators data were analyzed by SPSS25.0 software. 【Results】 The average pass rate of key equipment monitoring, environment monitoring, key material monitoring, and blood testing item monitoring of 17 blood banks were 99.47%, 99.51%, 99.95% and 98.99%, respectively. Significant difference was noticed in the pass rate of environment monitoring among blood banks of varied scales(P<0.05), and the Pearson correlation coefficient (r) between the total number of blood quality testing items and the total amount of blood component preparation was 0.645 (P<0.05). The average discarding rates of blood testing or non-blood testing were 1.14% and 3.36% respectively, showing significant difference among blood banks of varied scales (P<0.05). The average discarding rate of lipemic blood was 3.07%, which had a positive correlation with the discarding rate of non testing (r=0.981 3, P<0.05). There was a statistically significant difference in the discarding rate of lipemic blood between blood banks with lipemic blood control measures and those without (P<0.05). The average discarding rate of abnormal color, non-standard volume, blood bag damage, hemolysis, blood protein precipitation and blood clotting were 0.20%, 0.14%, 0.06%, 0.06%, 0.02% and 0.02% respectively, showing statistically significant differences among large, medium and small blood banks(P<0.05).The average discarding rates of expired blood, other factors, confidential unit exclusion and unqualified samples were 0.02%, 0.05%, 0.003% and 0.004%, respectively. The discarding rate of blood with air bubbles was 0.015%, while that of blood with foreign body and unqualified label were 0. 【Conclusion】 The quality control indicator system of blood banks in Shandong can monitor weak points in process management, with good applicability, feasibility, and effectiveness. It is conducive to evaluate different blood banks, continuously improve the quality control level of blood collection and supply, promote the homogenization and standardization of blood quality management, and lay the foundation for comprehensive evaluation of blood banks in Shandong.
4.Quality monitoring indicator system in blood banks of Shandong: applied in blood donation services, component preparation and blood supply process
Yuqing WU ; Hong ZHOU ; Zhijie ZHANG ; Zhiquan RONG ; Xuemei LI ; Zhe SONG ; Shuhong ZHAO ; Zhongsi YANG ; Qun LIU ; Lin ZHU ; Xiaojuan FAN ; Shuli SUN ; Wei ZHANG ; Jinyu HAN ; Haiyan HUANG ; Guangcai LIU ; Ping CHEN ; Xianwu AN ; Hui ZHANG ; Junxia REN ; Xuejing LI ; Chenxi YANG ; Bo ZHOU ; Hui YE ; Mingming QIAO ; Hua SHEN ; Dunzhu GONGJUE ; Yunlong ZHUANG
Chinese Journal of Blood Transfusion 2024;37(3):275-282
【Objective】 To establish an effective quality indicator monitoring system, scientifically and objectively evaluate the quality management level of blood banks, and achieve continuous improvement of quality management in blood bank. 【Methods】 A quality monitoring indicator system that covers the whole process of blood collection and supply was established, the questionnaire of Quality Monitoring Indicators for Blood Collection and Supply Process with clear definition of indicators and calculation formulas was distributed to 17 blood banks in Shandong. Statistical analysis of 21 quality monitoring indicators in terms of blood donation service (10 indicators), blood component preparation (7 indicators ), and blood supply (4 indicators) from each blood bank from January to December 2022 were conducted using SPSS25.0 software The differences in quality monitoring indicators of blood banks of different scales were analyzed. 【Results】 The average values of quality monitoring indicators for blood donation service process of 17 blood banks were as follows: 44.66% (2 233/5 000) of regular donors proportion, 0.22% (11/50) of adverse reactions incidence, 0.46% (23/5 000) of non-standard whole blood collection rate, 0.052% (13/25 000) of missed HBsAg screening rate, 99.42% (4 971/5 000) of first, puncture successful rate, 86.49% (173/200) of double platelet collection rate, 66.50% (133/200) of 400 mL whole blood collection rate, 99.25% (397/400) of donor satisfaction rate, 82.68% (2 067/2 500) of use rate of whole blood collection bags with bypass system with sample tube, and 1 case of occupational exposure in blood collection.There was a strong positive correlation between the proportion of regular blood donors and the collection rate of 400 mL whole blood (P<0.05). The platelet collection rate, incidence of adverse reactions to blood donation, and non-standard whole blood collection rate in large blood banks were significantly lower than those in medium and small blood banks (P<0.05). The average quality monitoring indicators for blood component preparation process of 17 blood banks were as follows: the leakage rate of blood component preparation bags was 0.03% (3/10 000), the discarding rate of lipemic blood was 3.05% (61/2 000), the discarding rate of hemolysis blood was 0.13%(13/10 000). 0.06 case had labeling errors, 8 bags had blood catheter leaks, 2.76 bags had blood puncture/connection leaks, and 0.59 cases had non-conforming consumables. The discarding rate of hemolysis blood of large blood banks was significantly lower than that of medium and small blood banks (P<0.05), and the discarding rate of lipemic blood of large and medium blood banks was significantly lower than that of small blood banks (P<0.05). The average values of quality monitoring indicators for blood supply process of 17 blood banks were as follows: the discarding rate of expired blood was 0.023% (23/100 000), the leakage rate during storage and distribution was of 0.009%(9/100 000), the discarding rate of returned blood was 0.106% (53/50 000), the service satisfaction of hospitals was 99.16% (2 479/2 500). The leakage rate of blood components during storage and distribution was statistically different with that of blood component preparation bags between different blood banks (P<0.05). There were statistically significant differences in the proportion of regular blood donors, incidence of adverse reactions, non-standard whole blood collection rate, 400 mL whole blood collection rate, double platelet collection rate, the blood bag leakage rate during preparation process, the blood components leakage rate during storage and distribution as well as the discarding rate of lipemic blood, hemolysis blood, expired blood and returned blood among large, medium and small blood banks (all P<0.05). 【Conclusion】 The establishment of a quality monitoring indicator system for blood donation services, blood component preparation and blood supply processes in Shandong has good applicability, feasibility and effectiveness. It can objectively evaluate the quality management level, facilitate the continuous improvement of the quality management system, promote the homogenization of blood management in the province and lay the foundation for future comprehensive evaluation of blood banks.
5.Research on the regulation of ferroptosis in hepatic stellate cells line LX2 by recombinant cytoglobin
Xun-wei DUAN ; Gui-qing XIAO ; Huai-yu CHEN ; Yong ZHANG ; Wen-lin WU ; Yi GAO ; Yong DIAO
Acta Pharmaceutica Sinica 2024;59(8):2237-2244
Intracellular overexpression of cytoglobin (Cygb) has been shown to reduce extracellular matrix deposition and promote liver fibrosis recovery, but its mechanism is not yet clear. This study constructed and expressed a fusion protein (TAT-Cygb) of cell penetrating peptide TAT and Cygb, to investigate the effect of fusion protein TAT-Cygb on regulating hepatic stellate cells (HSCs) ferroptosis. Cultured human hepatic stellate cells line (LX2) were treated with TAT-Cygb and erastin
6.Analysis of influencing factors of pancreatic fat deposition and the association with islet function in type 2 diabetes mellitus
Hui HUA ; Chao-Yu ZHU ; Yuan-Yuan XIAO ; Fu-Song JIANG ; Qing-Ge GAO ; Ji QIAO ; Li WEI
Medical Journal of Chinese People's Liberation Army 2024;49(5):527-533
Objective To analyze the influencing factors of pancreatic fat deposition in patients with type 2 diabetes mellitus(T2DM),and to explore the relationship between pancreatic fat deposition and islet function.Methods A survey on diabetes prevalence was conducted among 548 residents in the Nicheng community of Pudong New Area from October 2015 to December 2016,including 301 patients with T2DM and 247 subjects with normal glucose tolerance(NGT).General information of the subjects were recorded,blood biochemical and insulin indexes were measured,body composition was measured by dual-energy X-ray absorptiometry,and insulin resistance index(HOMA-IR)and islet cell sensitivity index(HOMA-β)were calculated.Fatty liver and pancreatic fat deposition were detected by ultrasound.Both the T2DM group and NGT group were further divided into two subgroups according to the pancreatic fat deposition.Differences in general demographic information,biochemical and body fat indices among the groups were compared.Multivariate logistic regression was used to analyze the influencing factors of pancreatic fat deposition.Results In the NGT group,the subgroup with pancreatic fat deposition showed higher levels of age,waist circumference,waist-to-hip ratio(WHR),body mass index(BMI),fasting insulin levels(FINS),2-hour postprandial insulin levels(2 h INS),triglycerides(TG),uric acid(UA),alanine aminotransferase(ALT),fatty liver prevalence,abdominal fat percentage,and abdomen-to-hip ratio(AHR),compared with the subgroup without pancreatic fat deposition.High-density lipoprotein cholesterol(HDL-C)and limb fat percentage were lower in the subgroup with pancreatic fat deposition.In the T2DM group,the subgroup with pancreatic fat deposition showed higher levels of waist circumference,BMI,FINS,2 h INS,TG,UA,ALT,aspartate aminotransferase(AST),fatty liver prevalence,and abdominal fat percentage,compared with the subgroup without pancreatic fat deposition,with statistically significant differences(P<0.05).The HOMA-IR and HOMA-β in both NGT and T2DM groups with pancreatic fat deposition were significantly higher than those in the groups without pancreatic fat deposition.The prevalence of insulin resistance also significantly increased,with statistically significant differences(P<0.05).The results of multivariate logistic regression analysis showed that HDL-C,HOMA-β,abdominal fat percentage,age and fatty liver were the influencing factors for pancreatic fat deposition in NGT.Conclusion Elderly individuals with abdominal obesity and fatty liver are more prone to developing pancreatic fat deposition,which can affect islet function and aggravate the insulin resistance.
7.The cytochrome P4501A1 (CYP1A1) inhibitor bergamottin enhances host tolerance to multidrug-resistant Vibrio vulnificus infection
Ruo-Bai QIAO ; Wei-Hong DAI ; Wei LI ; Xue YANG ; Dong-Mei HE ; Rui GAO ; Yin-Qin CUI ; Ri-Xing WANG ; Xiao-Yuan MA ; Fang-Jie WANG ; Hua-Ping LIANG
Chinese Journal of Traumatology 2024;27(5):295-304
Purpose::Vibrio vulnificus ( V. Vulnificus) infection is characterized by rapid onset, aggressive progression, and challenging treatment. Bacterial resistance poses a significant challenge for clinical anti-infection treatment and is thus the subject of research. Enhancing host infection tolerance represents a novel infection prevention strategy to improve patient survival. Our team initially identified cytochrome P4501A1 (CYP1A1) as an important target owing to its negative modulation of the body's infection tolerance. This study explored the superior effects of the CYP1A1 inhibitor bergamottin compared to antibiotic combination therapy on the survival of mice infected with multidrug-resistant V. Vulnificus and the protection of their vital organs. Methods::An increasing concentration gradient method was used to induce multidrug-resistant V. Vulnificus development. We established a lethal infection model in C57BL/6J male mice and evaluated the effect of bergamottin on mouse survival. A mild infection model was established in C57BL/6J male mice, and the serum levels of creatinine, urea nitrogen, aspartate aminotransferase, and alanine aminotransferase were determined using enzyme-linked immunosorbent assay to evaluate the effect of bergamottin on liver and kidney function. The morphological changes induced in the presence of bergamottin in mouse organs were evaluated by hematoxylin and eosin staining of liver and kidney tissues. The bacterial growth curve and organ load determination were used to evaluate whether bergamottin has a direct antibacterial effect on multidrug-resistant V. Vulnificus. Quantification of inflammatory factors in serum by enzyme-linked immunosorbent assay and the expression levels of inflammatory factors in liver and kidney tissues by real-time quantitative polymerase chain reaction were performed to evaluate the effect of bergamottin on inflammatory factor levels. Western blot analysis of IκBα, phosphorylated IκBα, p65, and phosphorylated p65 protein expression in liver and kidney tissues and in human hepatocellular carcinomas-2 and human kidney-2 cell lines was used to evaluate the effect of bergamottin on the nuclear factor kappa-B signaling pathway. One-way ANOVA and Kaplan-Meier analysis were used for statistical analysis. Results::In mice infected with multidrug-resistant V. Vulnificus, bergamottin prolonged survival ( p = 0.014), reduced the serum creatinine ( p = 0.002), urea nitrogen ( p = 0.030), aspartate aminotransferase ( p = 0.029), and alanine aminotransferase ( p = 0.003) levels, and protected the cellular morphology of liver and kidney tissues. Bergamottin inhibited interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α expression in serum (IL-1β: p = 0.010, IL-6: p = 0.029, TNF-α: p = 0.025) and inhibited the protein expression of the inflammatory factors IL-1β, IL-6, TNF-α in liver (IL-1β: p = 0.010, IL-6: p = 0.011, TNF-α: p = 0.037) and kidney (IL-1β: p = 0.016, IL-6: p = 0.011, TNF-α: p = 0.008) tissues. Bergamottin did not affect the proliferation of multidrug-resistant V. Vulnificus or the bacterial load in the mouse peritoneal lavage fluid ( p = 0.225), liver ( p = 0.186), or kidney ( p = 0.637). Conclusion::Bergamottin enhances the tolerance of mice to multidrug-resistant V. Vulnificus infection. This study can serve as a reference and guide the development of novel clinical treatment strategies for V. Vulnificus.
8.Effect mechanism of dihydromyricetin on the tumor biological characteristics of endometrial cancer cells
Wei-Hua CUI ; Jing-Ying SONG ; Shu-Xin QIAO ; Shu-Zhong DUAN
Journal of Regional Anatomy and Operative Surgery 2024;33(12):1039-1043
Objective To explore the effects of dihydromyricetin on the proliferation,apoptosis,and invasion of endometrial cancer(EC)cells and its possible mechanisms.Methods Ishikawa cells in the logarithmic growth phase were taken and divided into the control group,20 μmol/L dihydromyricetin intervention group,40 μmol/L dihydromyricetin intervention group,and 80 μmol/L dihydromyricetin intervention group,which were treated with different final concentrations of dihydromyricetin(0 μmol/L,20 μmol/L,40 μmol/L,80 μmol/L).Then,CCK-8 assay and flow cytometry were used to detect the effects of dihydromyricetin on the cell proliferation and apoptosis.Transwell experiment was used to detect the effect of dihydromyricetin on the cell invasion.qRT-PCR and Western blot were used to detect the effects of dihydromyricetin on the cell expression of miR-21 and PTEN.Results Compared with the control group,the cell proliferation inhibition rate and apoptosis rate in the dihydromyricetin intervention group were significantly increased(P<0.05),and gradually increased with the increase of dihydromyricetin concentration(P<0.05).Compared with the control group,the numbers of migration and invasion cells in the dihydromyricetin intervention group were significantly decreased(P<0.05),and gradually decreased with the increase of dihydromyricetin concentration(P<0.05).Compared with the control group,the cell expression of miR-21 in the dihydromyricetin intervention group was significantly decreased(P<0.05),and gradually decreased with the increase of dihydromyricetin concentration(P<0.05),the expression levels of PTEN mRNA and protein were significantly increased(P<0.05),and gradually increased with the increase of dihydromyricetin concentration(P<0.05).Conclusion Dihydromyricetin can inhibit the growth and metastasis of EC cells,and the inhibitory effect is positively correlated with its concentration.The mechanism may be related to the effect of dihydromyricetin on the miR-21/PTEN signaling pathway of EC cells.
9.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
10.The crosstalk of Wnt/β-catenin signaling and p53 in acute kidney injury and chronic kidney disease
Wen-Hua MING ; Lin WEN ; Wen-Juan HU ; Rong-Fang QIAO ; Yang ZHOU ; Bo-Wei SU ; Ya-Nan BAO ; Ping GAO ; Zhi-Lin LUAN
Kidney Research and Clinical Practice 2024;43(6):724-738
Wnt/β-catenin is a signaling pathway associated with embryonic development, organ formation, cancer, and fibrosis. Its activation can repair kidney damage during acute kidney injury (AKI) and accelerate the occurrence of renal fibrosis after chronic kidney disease (CKD). Interestingly, p53 has also been found as a key modulator in AKI and CKD in recent years. Meantime, some studies have found crosstalk between Wnt/β-catenin signaling pathways and p53, but more evidence is required on whether they have synergistic effects in renal disease progression. This article reviews the role and therapeutic targets of Wnt/β-catenin and p53 in AKI and CKD and proposes for the first time that Wnt/β-catenin and p53 have a synergistic effect in the treatment of renal injury.

Result Analysis
Print
Save
E-mail