1.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
2.Exercise Regulates Structural Plasticity and Neurogenesis of Hippocampal Neurons and Improves Memory Impairment in High-fat Diet-induced Obese Mice
Meng-Si YAN ; Lin-Jie SHU ; Chao-Ge WANG ; Ran CHENG ; Lian-Wei MU ; Jing-Wen LIAO
Progress in Biochemistry and Biophysics 2025;52(4):995-1007
ObjectiveObesity has been identified as one of the most important risk factors for cognitive dysfunction. Physical exercise can ameliorate learning and memory deficits by reversing synaptic plasticity in the hippocampus and cortex in diseases such as Alzheimer’s disease. In this study, we aimed to determine whether 8 weeks of treadmill exercise could alleviate hippocampus-dependent memory impairment in high-fat diet-induced obese mice and investigate the potential mechanisms involved. MethodsA total of sixty 6-week-old male C57BL/6 mice, weighing between 20-30 g, were randomly assigned to 3 distinct groups, each consisting of 20 mice. The groups were designated as follows: control (CON), high-fat diet (HFD), and high-fat diet with exercise (HFD-Ex). Prior to the initiation of the treadmill exercise protocol, the HFD and HFD-Ex groups were fed a high-fat diet (60% fat by kcal) for 20 weeks. The mice in the HFD-Ex group underwent treadmill exercise at a speed of 8 m/min for the first 10 min, followed by 12 m/min for the subsequent 50 min, totally 60 min of exercise at a 0° slope, 5 d per week, for 8 weeks. We employed Y-maze and novel object recognition tests to assess hippocampus-dependent memory and utilized immunofluorescence, Western blot, Golgi staining, and ELISA to analyze axon length, dendritic complexity, number of spines, the expression of c-fos, doublecortin (DCX), postsynaptic density-95 (PSD95), synaptophysin (Syn), interleukin-1β (IL-1β), and the number of major histocompatibility complex II (MHC-II) positive cells. ResultsMice with HFD-induced obesity exhibit hippocampus-dependent memory impairment, and treadmill exercise can prevent memory decline in these mice. The expression of DCX was significantly decreased in the HFD-induced obese mice compared to the control group (P<0.001). Treadmill exercise increased the expression of c-fos (P<0.001) and DCX (P=0.001) in the hippocampus of the HFD-induced obese mice. The axon length (P<0.001), dendritic complexity (P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P<0.001) in the hippocampus were significantly decreased in the HFD-induced obese mice compared to the control group. Treadmill exercise increased the axon length (P=0.002), dendritic complexity(P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P=0.001) of the hippocampus in the HFD-induced obese mice. Our study found a significant increase in MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of HFD-induced obese mice compared to the control group. Treadmill exercise was found to reduce the number of MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of obese mice induced by a HFD. ConclusionTreadmill exercise led to enhanced neurogenesis and neuroplasticity by increasing the axon length, dendritic complexity, dendritic spine numbers, and the expression of PSD95 and DCX, decreasing the number of MHC-II positive cells and neuroinflammation in HFD-induced obese mice. Therefore, we speculate that exercise may serve as a non-pharmacologic method that protects against HFD-induced hippocampus-dependent memory dysfunction by enhancing neuroplasticity and neurogenesis in the hippocampus of obese mice.
3.Value of FibroScan, gamma-glutamyl transpeptidase-to-platelet ratio, S index, interleukin-6, and tumor necrosis factor-α in the diagnosis of HBeAg-positive chronic hepatitis B liver fibrosis
Yingyuan ZHANG ; Danqing XU ; Huan MU ; Chunyan MOU ; Lixian CHANG ; Yuanzhen WANG ; Hongyan WEI ; Li LIU ; Weikun LI ; Chunyun LIU
Journal of Clinical Hepatology 2025;41(4):670-676
ObjectiveTo investigate the value of noninvasive imaging detection (FibroScan), two serological models of gamma-glutamyl transpeptidase-to-platelet ratio (GPR) score and S index, and two inflammatory factors of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in predicting liver fibrosis in patients with HBeAg-positive chronic hepatitis B (CHB), as well as the consistency of liver biopsy in pathological staging, and to provide early warning for early intervention of CHB. MethodsA retrospective analysis was performed for 131 HBeAg-positive CHB patients who underwent liver biopsy in The Third People’s Hospital of Kunming from January 2019 to December 2023. The results of liver biopsy were collected from all patients, and related examinations were performed before liver biopsy, including total bilirubin, alanine aminotransferase, platelet count, gamma-glutamyl transpeptidase, albumin, IL-6, TNF-α, liver stiffness measurement (LSM), and abdominal ultrasound. An analysis of variance was used for comparison of normally distributed continuous data between groups, and the Kruskal-Wallis H test was used for comparison of non-normally distributed continuous data between groups; the chi-square test was used for comparison of categorical data between groups. A Kappa analysis was used to investigate the consistency between LSM noninvasive histological staging and pathological staging based on liver biopsy, and the Spearman analysis was used to investigate the correlation between each variable and FibroScan in the diagnosis of liver fibrosis stage. The Logistic regression analysis was used to construct joint predictive factors. The receiver operating characteristic (ROC) curve was used to evaluate the value of each indicator alone and the joint predictive model in the diagnosis of liver fibrosis, and the Delong test was used for comparison of the area under the ROC curve (AUC). ResultsIn the consistency check, inflammation degree based on liver biopsy had a Kappa value of 0.807 (P<0.001), and liver fibrosis degree based on liver biopsy had a Kappa value of 0.827 (P<0.001), suggesting that FibroScan noninvasive histological staging and liver biopsy showed good consistency in assessing inflammation degree and liver fibrosis stage. Age was positively correlated with LSM, GPR score, S index, IL-6, and TNF-α (all P<0.05), and GPR score, S index, IL-6, and TNF-α were positively correlated with LSM (all P<0.05). GPR score, S index, IL-6, and TNF-α were all independent risk factors for diagnosing significant liver fibrosis (≥S2) and progressive liver fibrosis (≥S3) (all P<0.05). As for each indicator alone, GPR score had the highest value in the diagnosis of significant liver fibrosis (≥S2), followed by S index, IL-6, and TNF-α, while S index had the highest value in the diagnosis of progressive liver fibrosis (≥S3), followed by GPR score, TNF-α, and IL-6. The joint model had a higher predictive value than each indicator alone (all P<0.05). ConclusionThere is a good consistency between FibroScan noninvasive histological staging and pathological staging based on liver biopsy. GPR score, S index, IL-6, and TNF-α are independent risk factors for evaluating different degree of liver fibrosis in CHB, and the combined prediction model established by them can better diagnose liver fibrosis.
4.Role and mechanism of caffeic acid in a mouse model of severe acute pancreatitis
Siyu XU ; Tao LIU ; Lulu LAN ; Yining XUE ; Wei WEI ; Yi HAN ; Sucheng MU ; Haiyan SONG ; Shilin DU
Journal of Clinical Hepatology 2025;41(4):722-730
ObjectiveTo investigate the effect and potential mechanism of caffeic acid (CA) on severe acute pancreatitis (SAP) induced by caerulein combined with lipopolysaccharide (LPS), and to provide a basis for the research on novel drugs for the treatment of SAP. MethodsC57BL/6J mice, aged 6 weeks, were divided into control group, model group, CA group, and octreotide acetate (OA) group, with 6 mice in each group. The mice in the control group were given injection of normal saline, and those in the other groups were given intraperitoneal injection of caerulein combined with LPS to establish a mouse model of SAP. At 1 hour after the first injection of caerulein, the mice in the CA group and the OA group were given intraperitoneal injection of CA or subcutaneous injection of OA at an interval of 8 hours. The general status of the mice was observed after 24 hours of modeling, and serum, pancreas, lung, and colon samples were collected. HE staining was used to observe the histopathological changes of the pancreas and lungs, and the serum levels of α-amylase, lipase, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), alanine aminotransferase, aspartate aminotransferase, and creatinine were measured. RT-PCR was used to measure the expression of proinflammatory factors in the pancreas and lungs; myeloperoxidase (MPO) immunohistochemistry was used to observe the degree of neutrophil infiltration; Western blot was used to measure the activation of nuclear factor-kappa B (NF-κB) and the level of citrullinated histone H3 (CitH3), a marker for the formation of neutrophil extracellular traps (NETs), in the pancreas and lungs, as well as the expression level of ZO-1 in colon tissue. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the Dunnett’s t-test was used for further comparison between two groups. ResultsCompared with the control group, the model group had severe injury in the pancreas and lungs and significant increases in the activity of serum α- amylase and lipase and the levels of the proinflammatory cytokines IL-6, interleukin-1β (IL-1β), and TNF-α in serum and lung tissue (all P<0.05), as well as significant increases in NF-κB activation, neutrophil infiltration, and the formation of NETs in the pancreas and lungs (all P<0.05). Compared with the model group, the CA group had alleviated pathological injury of the pancreas and lungs and significant reductions in the activity of serum α-amylase and the levels of the proinflammatory cytokines IL-6, IL-1β, and TNF-α in serum and lung tissue (all P<0.05), as well as significant reductions in NF-κB activation, neutrophil infiltration, and the formation of NETs in the pancreas and lungs (all P<0.05). ConclusionCA can alleviate SAP induced by caerulein combined with LPS in mice, possibly by inhibiting neutrophil recruitment and the formation of NETs.
5.Mechanism of Lijin manipulation regulating scar formation in skeletal muscle injury repair in rabbits
Kaiying LI ; Xiaoge WEI ; Fei SONG ; Nan YANG ; Zhenning ZHAO ; Yan WANG ; Jing MU ; Huisheng MA
Chinese Journal of Tissue Engineering Research 2025;29(8):1600-1608
BACKGROUND:Lijin manipulation can promote skeletal muscle repair and treat skeletal muscle injury.However,the formation of fibrosis and scar tissue hyperplasia are closely related to the quality of skeletal muscle repair.To study the regulatory effect of Lijin manipulation on the formation of fibrosis and scar tissue hyperplasia is helpful to explain the related mechanism of Lijin manipulation to improve the repair quality of skeletal muscle injury. OBJECTIVE:To explore the mechanism of Lijin manipulation to improve the repair quality of skeletal muscle injury in rabbits,thereby providing a scientific basis for clinical treatment. METHODS:Forty-five healthy adult Japanese large-ear white rabbits were randomly divided into blank group,model group and Lijin group,with 15 rats in each group.Gastrocnemius strike modeling was performed in both model group and Lijin group.The Lijin group began to intervene with tendon manipulation on the 3rd day after modeling,once a day,and 15 minutes at a time.Five animals in each group were killed on the 7th,14th and 21st days after modeling.The morphology and inflammatory cell count of gastrocnemius were observed by hematoxylin-eosin staining,the collagen fiber amount was observed by Masson staining,the expression of interleukin-6 and interleukin-10 in gastrocnemius was detected by ELISA.The protein and mRNA expressions of paired cassette gene 7,myogenic differentiation factor,myoblastogenin,alpha-actin,transforming growth factor beta 1,and type Ⅰ collagen were detected by western blot and RT-PCR,respectively,and the expression of type Ⅰ collagen protein was detected by immunohistochemistry. RESULTS AND CONCLUSION:Hematoxylin-eosin staining and Masson staining showed that compared with the model group,inflammatory cell infiltration and collagen fiber content decreased in the Lijin group(P<0.01),and the muscle fibers gradually healed.ELISA results showed that compared with the model group,the expression of interleukin-6 in the Lijin group continued to decrease(P<0.05),and the expression of interleukin-10 increased on the 7th day after modeling(P<0.05)and then showed a decreasing trend(P<0.05).Western blot and RT-PCR results showed that compared with the model group,the protein and mRNA expressions of paired cassette gene 7,myogenic differentiation factor,myoblastogenin in the Lijin group were significantly increased on the 14th day after modeling(P<0.05),but decreased on the 21st day(P<0.05);the protein and mRNA expressions of alpha-actin,transforming growth factor beta 1,and type Ⅰ collagen in the Lijin group were significantly decreased compared with those in the model group(P<0.05).Immunohistochemical results showed that the expression of type Ⅰ collagen in the Lijin group was significantly lower than that in the model group(P<0.05).To conclude,Lijin manipulation could improve the repair quality of skeletal muscle injury by inhibiting inflammation,promoting the proliferation and differentiation of muscle satellite cells,and reducing fibrosis.
6.Construction of a individualized model for predicting the risk of recurrence in patients with retinal vein occlusion induced macular edema
Jun FAN ; Meichi ZHOU ; Mu WEI
International Eye Science 2024;24(2):284-288
AIM: To analyze the recurrence factors of patients with retinal vein occlusion(RVO)induced macular edema(ME)and construct a nomogram model.METHODS: Retrospective study. A total of 306 patients with RVO induced ME admitted to our hospital from January 2019 to June 2022 were included as study objects, and they were divided into modeling group with 214 cases(214 eyes)and 92 cases(92 eyes)in the verification group by 7:3. All patients were followed up for 1 a after receiving anti-vascular endothelial growth factor(VEGF)treatment, and patients in the modeling group were separated into a recurrence group(n=66)and a non recurrence group(n=148)based on whether they had recurrence. Clinical data were collected and multivariate Logistic regression was applied to analyze and determine the factors affecting recurrence in patients with RVO induced ME; R3.6.3 software was applied to construct a nomogram model for predicting the recurrence risk of patients with RVO induced ME; ROC curve and calibration curve were applied to evaluate the discrimination and consistency of nomogram model in predicting the recurrence risk of patients with RVO induced ME.RESULTS: There were statistically significant differences in central retinal thickness(CRT), course of disease, hyperreflective foci(HF), disorder of retinal inner layer structure, and injection frequency between the non recurrence group and the recurrence group before treatment(all P<0.05). The multivariate Logistic regression analysis showed that pre-treatment CRT(OR=1.011), course of disease(OR=1.104), HF(OR=5.074), retinal inner layer structural disorder(OR=4.640), and injection frequency(OR=4.036)were influencing factors for recurrence in patients with RVO induced ME(all P<0.01). The area under the ROC curve of the modeling group was 0.924(95%CI: 0.882-0.966), the slope of the calibration curve was close to 1, and the results of the Hosmer-Lemeshow goodness of fit test showed that χ2=11.817, P=0.160; the area under the ROC curve of the verification group was 0.939(95%CI: 0.892-0.985), the slope of the calibration curve was close to 1, and the results of the Hosmer-Lemeshow goodness of fit test showed χ2=6.082, P=0.638.CONCLUSION: Pre-treatment CRT, course of disease, HF, disorder of retinal inner layer structure, and injection frequency are independent risk factors for recurrence in patients with RVO induced ME. The nomogram model constructed based on this has a high discrimination and consistency in predicting the recurrence risk of patients with RVO induced ME.
7.Therapeutic effect of transplantation of bone marrow mesenchymal stem cells co-cultured with bone marrow M2 macrophages on a rat model of liver cirrhosis
Xinrui ZHENG ; Yannan XU ; Danyang WANG ; Feifei XING ; Mengyao ZONG ; Shihao ZHANG ; Junyi ZHAN ; Wei LIU ; Gaofeng CHEN ; Jiamei CHEN ; Ping LIU ; Yongping MU
Journal of Clinical Hepatology 2024;40(1):96-103
ObjectiveTo investigate the effect of transplantation of bone marrow mesenchymal stem cells (BMSCs) co-cultured with bone marrow-derived M2 macrophages (M2-BMDMs), named as BMSCM2, on a rat model of liver cirrhosis induced by carbon tetrachloride (CCl4)/2-acetaminofluorene (2-AAF). MethodsRat BMDMs were isolated and polarized into M2 phenotype, and rat BMSCs were isolated and co-cultured with M2-BMDMs at the third generation to obtain BMSCM2. The rats were given subcutaneous injection of CCl4 for 6 weeks to establish a model of liver cirrhosis, and then they were randomly divided into model group (M group), BMSC group, and BMSCM2 group, with 6 rats in each group. A normal group (N group) with 6 rats was also established. Since week 7, the model rats were given 2-AAF by gavage in addition to the subcutaneous injection of CCl4. Samples were collected at the end of week 10 to observe liver function, liver histopathology, and hydroxyproline (Hyp) content in liver tissue, as well as changes in the markers for hepatic stellate cells, hepatic progenitor cells, cholangiocytes, and hepatocytes. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsCompared with the N group, the M group had significant increases in the activities of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) (P<0.01); compared with the M group, the BMSC and BMSCM2 groups had significant reductions in ALT and AST (P<0.01), and the BMSCM2 group had significantly better activities than the BMSC group (P<0.05). Compared with the N group, the M group had significant increases in Hyp content and the mRNA and protein expression levels of alpha-smooth muscle actin (α-SMA) in the liver (P<0.01); compared with the M group, the BMSC and BMSCM2 groups had significant reductions in Hyp content and the expression of α-SMA (P<0.05), and the BMSCM2 group had a significantly lower level of α-SMA than the BMSC group (P<0.01). Compared with the N group, the M group had significant increases in the mRNA expression levels of the hepatic progenitor cell markers EpCam and Sox9 and the cholangiocyte markers CK7 and CK19 (P<0.01) and significant reductions in the expression levels of the hepatocyte markers HNF-4α and Alb (P<0.01); compared with the M group, the BMSC and BMSCM2 groups had significant reductions in the mRNA expression levels of EpCam, Sox9, CK7, and CK19 (P<0.05) and significant increases in the mRNA expression levels of HNF-4α and Alb (P<0.05), and compared with the BMSC group, the BMSCM2 group had significant reductions in the mRNA expression levels of EpCam and CK19 (P<0.05) and significant increase in the expression level of HNF-4α (P<0.05). ConclusionM2-BMDMs can enhance the therapeutic effect of BMSCs on CCl4/2-AAF-induced liver cirrhosis in rats, which provides new ideas for further improving the therapeutic effect of BMSCs on liver cirrhosis.
8.Predicting the Risk of Arterial Stiffness in Coal Miners Based on Different Machine Learning Models.
Qian Wei CHEN ; Xue Zan HUANG ; Yu DING ; Feng Ren ZHU ; Jia WANG ; Yuan Jie ZOU ; Yuan Zhen DU ; Ya Jun ZHANG ; Zi Wen HUI ; Feng Lin ZHU ; Min MU
Biomedical and Environmental Sciences 2024;37(1):108-111
9.Trilogy of drug repurposing for developing cancer and chemotherapy-induced heart failure co-therapy agent.
Xin CHEN ; Xianggang MU ; Lele DING ; Xi WANG ; Fei MAO ; Jinlian WEI ; Qian LIU ; Yixiang XU ; Shuaishuai NI ; Lijun JIA ; Jian LI
Acta Pharmaceutica Sinica B 2024;14(2):729-750
Chemotherapy-induced complications, particularly lethal cardiovascular diseases, pose significant challenges for cancer survivors. The intertwined adverse effects, brought by cancer and its complication, further complicate anticancer therapy and lead to diminished clinical outcomes. Simple supplementation of cardioprotective agents falls short in addressing these challenges. Developing bi-functional co-therapy agents provided another potential solution to consolidate the chemotherapy and reduce cardiac events simultaneously. Drug repurposing was naturally endowed with co-therapeutic potential of two indications, implying a unique chance in the development of bi-functional agents. Herein, we further proposed a novel "trilogy of drug repurposing" strategy that comprises function-based, target-focused, and scaffold-driven repurposing approaches, aiming to systematically elucidate the advantages of repurposed drugs in rationally developing bi-functional agent. Through function-based repurposing, a cardioprotective agent, carvedilol (CAR), was identified as a potential neddylation inhibitor to suppress lung cancer growth. Employing target-focused SAR studies and scaffold-driven drug design, we synthesized 44 CAR derivatives to achieve a balance between anticancer and cardioprotection. Remarkably, optimal derivative 43 displayed promising bi-functional effects, especially in various self-established heart failure mice models with and without tumor-bearing. Collectively, the present study validated the practicability of the "trilogy of drug repurposing" strategy in the development of bi-functional co-therapy agents.
10.Enhancement of tropane alkaloids biosynthesis in Atropa belladonna hariy root by overexpression of HnCYP82M3 and DsTRI genes
De-hui MU ; Yan-hong LIU ; Piao-piao CHEN ; Ai-juan TAN ; Bing-nan MA ; Hang PAN ; Ming-sheng ZHANG ; Wei QIANG
Acta Pharmaceutica Sinica 2024;59(3):775-783
Tropane alkaloids (TAs) are a class of anticholinergic drugs widely used in clinical practice and mainly extracted from plant, among which

Result Analysis
Print
Save
E-mail