1.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
2.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
3.Research on Magnetic Stimulation Intervention Technology for Alzheimer’s Disease Guided by Heart Rate Variability
Shu-Ting CHEN ; Du-Yan GENG ; Chun-Meng FAN ; Wei-Ran ZHENG ; Gui-Zhi XU
Progress in Biochemistry and Biophysics 2025;52(5):1264-1278
ObjectiveNon-invasive magnetic stimulation technology has been widely used in the treatment of Alzheimer’s disease (AD), but there is a lack of convenient and timely methods for evaluating and providing feedback on the effectiveness of the stimulation, which can be used to guide the adjustment of the stimulation protocol. This study aims to explore the possibility of heart rate variability (HRV) in diagnosing AD and guiding AD magnetic stimulation intervention techniques. MethodsIn this study, we used a 40 Hz, 10 mT pulsed magnetic field to expose AD mouse models to whole-body exposure for 18 d, and detected the behavioral and electroencephalographic signals before and after exposure, as well as the instant electrocardiographic signals after exposure every day. ResultsUsing one-way ANOVA and Pearson correlation coefficient analysis, we found that some HRV indicators could identify AD mouse models as accurately as behavioral and electroencephalogram(EEG) changes (P<0.05) and significantly distinguish the severity of the disease (P<0.05), including rMSSD, pNN6, LF/HF, SD1/SD2, and entropy arrangement. These HRV indicators showed good correlation and statistical significance with behavioral and EEG changes (r>0.3, P<0.05); HRV indicators were significantly modulated by the magnetic field exposure before and after the exposure, both of which were observed in the continuous changes of electrocardiogram (ECG) (P<0.05), and the trend of the stimulation effect was more accurately observed in the continuous changes of ECG. ConclusionHRV can accurately reflect the pathophysiological changes and disease degree, quickly evaluate the effect of magnetic stimulation, and has the potential to guide the pattern of magnetic exposure, providing a new idea for the study of personalized electromagnetic neuroregulation technology for brain diseases.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Therapeutic Effects of Theta Burst Stimulation on Cognition Following Brain Injury
Wan-Ting CHEN ; Yi-Wei YEH ; Shin-Chang KUO ; Yi-Chih SHIAO ; Chih-Chung HUANG ; Yi-Guang WANG ; Chun-Yen CHEN
Clinical Psychopharmacology and Neuroscience 2025;23(1):161-165
This case report explores the therapeutic potential of theta burst stimulation (TBS) for cognitive enhancement in individuals with brain injuries. The study presents a 38-year-old male suffering from an organic mental disorder attributed to a traumatic brain injury (TBI), who demonstrated notable cognitive improvements following an intensive TBS protocol targeting the left dorsal lateral prefrontal cortex. The treatment led to significant enhancements in impulse control, irritability, and verbal comprehension without adverse effects. Neuropsychological assessments and brain imaging post-intervention revealed improvements in short-term memory, abstract reasoning, list-generating fluency, and increased cerebral blood flow in the prefrontal cortex. These findings suggest that TBS, by promoting neural plasticity and reconfiguring neural networks, offers a promising avenue for cognitive rehabilitation in TBI patients. Further research is warranted to optimize TBS protocols and understand the mechanisms underlying its cognitive benefits.
6.Antiviral therapy for chronic hepatitis B with mildly elevated aminotransferase: A rollover study from the TORCH-B trial
Yao-Chun HSU ; Chi-Yi CHEN ; Cheng-Hao TSENG ; Chieh-Chang CHEN ; Teng-Yu LEE ; Ming-Jong BAIR ; Jyh-Jou CHEN ; Yen-Tsung HUANG ; I-Wei CHANG ; Chi-Yang CHANG ; Chun-Ying WU ; Ming-Shiang WU ; Lein-Ray MO ; Jaw-Town LIN
Clinical and Molecular Hepatology 2025;31(1):213-226
Background/Aims:
Treatment indications for patients with chronic hepatitis B (CHB) remain contentious, particularly for patients with mild alanine aminotransferase (ALT) elevation. We aimed to evaluate treatment effects in this patient population.
Methods:
This rollover study extended a placebo-controlled trial that enrolled non-cirrhotic patients with CHB and ALT levels below two times the upper limit of normal. Following 3 years of randomized intervention with either tenofovir disoproxil fumarate (TDF) or placebo, participants were rolled over to open-label TDF for 3 years. Liver biopsies were performed before and after the treatment to evaluate histopathological changes. Virological, biochemical, and serological outcomes were also assessed (NCT02463019).
Results:
Of 146 enrolled patients (median age 47 years, 80.8% male), 123 completed the study with paired biopsies. Overall, the Ishak fibrosis score decreased in 74 (60.2%), remained unchanged in 32 (26.0%), and increased in 17 (13.8%) patients (p<0.0001). The Knodell necroinflammation score decreased in 58 (47.2%), remained unchanged in 29 (23.6%), and increased in 36 (29.3%) patients (p=0.0038). The proportion of patients with an Ishak score ≥ 3 significantly decreased from 26.8% (n=33) to 9.8% (n=12) (p=0.0002). Histological improvements were more pronounced in patients switching from placebo. Virological and biochemical outcomes also improved in placebo switchers and remained stable in patients who continued TDF. However, serum HBsAg levels did not change and no patient cleared HBsAg.
Conclusions
In CHB patients with minimally raised ALT, favorable histopathological, biochemical, and virological outcomes were observed following 3-year TDF treatment, for both treatment-naïve patients and those already on therapy.
7.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
8.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
9.Therapeutic Effects of Theta Burst Stimulation on Cognition Following Brain Injury
Wan-Ting CHEN ; Yi-Wei YEH ; Shin-Chang KUO ; Yi-Chih SHIAO ; Chih-Chung HUANG ; Yi-Guang WANG ; Chun-Yen CHEN
Clinical Psychopharmacology and Neuroscience 2025;23(1):161-165
This case report explores the therapeutic potential of theta burst stimulation (TBS) for cognitive enhancement in individuals with brain injuries. The study presents a 38-year-old male suffering from an organic mental disorder attributed to a traumatic brain injury (TBI), who demonstrated notable cognitive improvements following an intensive TBS protocol targeting the left dorsal lateral prefrontal cortex. The treatment led to significant enhancements in impulse control, irritability, and verbal comprehension without adverse effects. Neuropsychological assessments and brain imaging post-intervention revealed improvements in short-term memory, abstract reasoning, list-generating fluency, and increased cerebral blood flow in the prefrontal cortex. These findings suggest that TBS, by promoting neural plasticity and reconfiguring neural networks, offers a promising avenue for cognitive rehabilitation in TBI patients. Further research is warranted to optimize TBS protocols and understand the mechanisms underlying its cognitive benefits.
10.Antiviral therapy for chronic hepatitis B with mildly elevated aminotransferase: A rollover study from the TORCH-B trial
Yao-Chun HSU ; Chi-Yi CHEN ; Cheng-Hao TSENG ; Chieh-Chang CHEN ; Teng-Yu LEE ; Ming-Jong BAIR ; Jyh-Jou CHEN ; Yen-Tsung HUANG ; I-Wei CHANG ; Chi-Yang CHANG ; Chun-Ying WU ; Ming-Shiang WU ; Lein-Ray MO ; Jaw-Town LIN
Clinical and Molecular Hepatology 2025;31(1):213-226
Background/Aims:
Treatment indications for patients with chronic hepatitis B (CHB) remain contentious, particularly for patients with mild alanine aminotransferase (ALT) elevation. We aimed to evaluate treatment effects in this patient population.
Methods:
This rollover study extended a placebo-controlled trial that enrolled non-cirrhotic patients with CHB and ALT levels below two times the upper limit of normal. Following 3 years of randomized intervention with either tenofovir disoproxil fumarate (TDF) or placebo, participants were rolled over to open-label TDF for 3 years. Liver biopsies were performed before and after the treatment to evaluate histopathological changes. Virological, biochemical, and serological outcomes were also assessed (NCT02463019).
Results:
Of 146 enrolled patients (median age 47 years, 80.8% male), 123 completed the study with paired biopsies. Overall, the Ishak fibrosis score decreased in 74 (60.2%), remained unchanged in 32 (26.0%), and increased in 17 (13.8%) patients (p<0.0001). The Knodell necroinflammation score decreased in 58 (47.2%), remained unchanged in 29 (23.6%), and increased in 36 (29.3%) patients (p=0.0038). The proportion of patients with an Ishak score ≥ 3 significantly decreased from 26.8% (n=33) to 9.8% (n=12) (p=0.0002). Histological improvements were more pronounced in patients switching from placebo. Virological and biochemical outcomes also improved in placebo switchers and remained stable in patients who continued TDF. However, serum HBsAg levels did not change and no patient cleared HBsAg.
Conclusions
In CHB patients with minimally raised ALT, favorable histopathological, biochemical, and virological outcomes were observed following 3-year TDF treatment, for both treatment-naïve patients and those already on therapy.

Result Analysis
Print
Save
E-mail