1.Identification of Alumen and Ammonium alum Based on XRD, FTIR, TG-DTA Combined with Chemometrics
Bin WANG ; Jingwei ZHOU ; Huangsheng ZHANG ; Jian FENG ; Hanxi LI ; Guorong MEI ; Jiaquan JIANG ; Hongping CHEN ; Fu WANG ; Yuan HU ; Youping LIU ; Shilin CHEN ; Lin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):178-186
ObjectiveTo establish the multi-technique characteristic profiles of Alumen by X-ray diffraction(XRD), Fourier-transform infrared spectroscopy(FTIR) and thermogravimetric-differential thermal analysis(TG-DTA), and to explore the spectral characteristics for rapid identification of Alumen and its potential adulterant, Ammonium alum. MethodsA total of 27 batches of Alumen samples from 8 production regions were collected for preliminary identification based on visual characteristics. The PDF standard cards of XRD were used to differentiate Alumen from A. alum, and the XRD characteristic profiles of Alumen were established, and then the common peaks were screened. Based on hierarchical clustering analysis(HCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), the characteristic information that could be used for identification of Alumen was selected with variable importance in the projection(VIP) value>1. FTIR characteristic profiles of Alumen were established, and key wavenumbers for identification were screened by HCA and OPLS-DA with VIP value>1. Meanwhile, the thermogravimetric differences between Alumen and A. alum were analyzed by TG-DTA, and the thermogravimetric traits that could be used for identification were screened. ResultsAlumen and A. alum could not be effectively distinguished by traits alone. However, by comparing the PDF standard cards of XRD, 15 batches of Alumen and 12 batches of A. alum could be distinguished. In the XRD profiles, 10 characteristic peaks were confirmed, corresponding to diffraction angles of 14.560°, 24.316°, 12.620°, 32.122°, 17.898°, 34.642°, 27.496°, 46.048°, 40.697° and 21.973°. In the FTIR profiles, 4 wavenumber ranges(399.193-403.050, 1 186.010-1 471.420, 1 801.190-2 620.790, 3 612.020-3 997.710 cm-1) and 12 characteristic wavenumbers(1 428.994, 1 430.922, 1 432.851, 1 434.779, 1 436.708, 1 438.636, 1 440.565, 1 442.493, 1 444.422, 1 446.350, 1 448.279, 1 450.207 cm-1) were identified. In the TG-DTA profiles, there were characteristic decomposition peaks of ammonium ion and mass reduction features near 555.34 ℃ for A. alum. These characteristics could serve as important criteria for distinguishing the authenticity of Alumen. ConclusionXRD, FTIR and TG-DTA can be used to rapidly detect Alumen and A. alum, and combined with the discriminant features selected through chemometrics, the rapid and accurate identification of Alumen and A. alum can be achieved. The research findings provide new approaches for the rapid identification of Alumen.
2.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
3.Identification of Alumen and Ammonium alum Based on XRD, FTIR, TG-DTA Combined with Chemometrics
Bin WANG ; Jingwei ZHOU ; Huangsheng ZHANG ; Jian FENG ; Hanxi LI ; Guorong MEI ; Jiaquan JIANG ; Hongping CHEN ; Fu WANG ; Yuan HU ; Youping LIU ; Shilin CHEN ; Lin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):178-186
ObjectiveTo establish the multi-technique characteristic profiles of Alumen by X-ray diffraction(XRD), Fourier-transform infrared spectroscopy(FTIR) and thermogravimetric-differential thermal analysis(TG-DTA), and to explore the spectral characteristics for rapid identification of Alumen and its potential adulterant, Ammonium alum. MethodsA total of 27 batches of Alumen samples from 8 production regions were collected for preliminary identification based on visual characteristics. The PDF standard cards of XRD were used to differentiate Alumen from A. alum, and the XRD characteristic profiles of Alumen were established, and then the common peaks were screened. Based on hierarchical clustering analysis(HCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), the characteristic information that could be used for identification of Alumen was selected with variable importance in the projection(VIP) value>1. FTIR characteristic profiles of Alumen were established, and key wavenumbers for identification were screened by HCA and OPLS-DA with VIP value>1. Meanwhile, the thermogravimetric differences between Alumen and A. alum were analyzed by TG-DTA, and the thermogravimetric traits that could be used for identification were screened. ResultsAlumen and A. alum could not be effectively distinguished by traits alone. However, by comparing the PDF standard cards of XRD, 15 batches of Alumen and 12 batches of A. alum could be distinguished. In the XRD profiles, 10 characteristic peaks were confirmed, corresponding to diffraction angles of 14.560°, 24.316°, 12.620°, 32.122°, 17.898°, 34.642°, 27.496°, 46.048°, 40.697° and 21.973°. In the FTIR profiles, 4 wavenumber ranges(399.193-403.050, 1 186.010-1 471.420, 1 801.190-2 620.790, 3 612.020-3 997.710 cm-1) and 12 characteristic wavenumbers(1 428.994, 1 430.922, 1 432.851, 1 434.779, 1 436.708, 1 438.636, 1 440.565, 1 442.493, 1 444.422, 1 446.350, 1 448.279, 1 450.207 cm-1) were identified. In the TG-DTA profiles, there were characteristic decomposition peaks of ammonium ion and mass reduction features near 555.34 ℃ for A. alum. These characteristics could serve as important criteria for distinguishing the authenticity of Alumen. ConclusionXRD, FTIR and TG-DTA can be used to rapidly detect Alumen and A. alum, and combined with the discriminant features selected through chemometrics, the rapid and accurate identification of Alumen and A. alum can be achieved. The research findings provide new approaches for the rapid identification of Alumen.
4.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
5.Association Between Vitamin D Status and Insulin Resistance in Adolescents: A Cross-sectional Observational Study
Xiaoyuan GUO ; Yutong WANG ; Zhibo ZHOU ; Shi CHEN ; Mei ZHANG ; Bo BAN ; Ping LI ; Xinran ZHANG ; Qiuping ZHANG ; Kai YANG ; Hongbo YANG ; Hanze DU ; Hui PAN
Medical Journal of Peking Union Medical College Hospital 2025;16(3):577-583
To investigate the correlation between vitamin D nutritional status and insulin resistance in pubertal adolescents. This cross-sectional observational study employed convenience sampling to recruit 2021-grade(8th grade) students from Jining No.7 Middle School in Shandong Province on June 5, 2023. Data collection included questionnaires, physical examinations, and imaging assessments to obtain general information, secondary sexual characteristics development, and bone age. Venous blood samples were collected to measure fasting blood glucose(FBG), fasting insulin(FINS), homeostasis model assessment of insulin resistance(HOMA-IR), and 25-hydroxyvitamin D[25(OH)D] levels. Spearman correlation analysis and multivariate linear regression models were used to examine the associations between serum vitamin D levels and FBG, FINS, and HOMA-IR. The study included 168 pubertal adolescents[69 females(41.1%), 99 males(58.9%); mean age(13.27±0.46) years]. All participants had entered puberty based on sexual development assessment. Vitamin D deficiency was observed in 41 participants(24.4%), insufficiency in 109(64.9%), and sufficiency in 18(10.7%). The median HOMA-IR was 3.49(2.57, 5.14).Significant differences were found across vitamin D status groups for HOMA-IR [4.45(2.54, 6.62) Vitamin D deficiency/insufficiency is prevalent among pubertal adolescents, and serum vitamin D levels show a significant inverse association with insulin resistance. These findings suggest the potential importance of vitamin D status in metabolic health during puberty.
6.Combined anterior and posterior miniscrews increase apical root resorption of maxillary incisors in protrusion and premolar extraction cases
Zhizun WANG ; Li MEI ; Zhenxing TANG ; Dong WU ; Yue ZHOU ; Ehab A. ABDULGHANI ; Yuan LI ; Wei ZHENG ; Yu LI
The Korean Journal of Orthodontics 2025;55(1):26-36
Objective:
Miniscrews are commonly utilized as temporary anchorage devices (TADs) in cases of maxillary protrusion and premolar extraction. This study aimed to investigate the effects and potential side effects of two conventional miniscrew configurations on the maxillary incisors.
Methods:
Eighty-two adult patients with maxillary dentoalveolar protrusion who had undergone bilateral first premolar extraction were retrospectively divided into three groups: non-TAD, two posterior miniscrews only (P-TADs), and two anterior and two posterior miniscrews combined (AP-TADs). Cone-beam computed tomography was used to evaluate the maxillary central incisors (U1).
Results:
The APTADs group had significantly greater U1 intrusion (1.99 ± 2.37 mm, n = 50) and less retroclination (1.70° ± 8.80°) compared to the P-TADs (–0.07 ± 1.65 mm and 9.45° ± 10.68°, n = 60) and non-TAD group (0.30 ± 1.61 mm and 1.91° ± 9.39°, n = 54).However, the AP-TADs group suffered from significantly greater apical root resorption (ARR) of U1 (2.69 ± 1.38 mm) than the P-TADs (1.63 ± 1.46 mm) and non-TAD group (0.89 ± 0.97 mm). Notably, the incidence of grade IV ARR was 16.6% in the AP-TADs group, significantly higher than the rates observed in the P-TADs (6.7%) and non-TAD (1.9%) groups. Multiple regression analysis revealed that after excluding tooth movement factors, the AP-TADs configuration resulted in an additional 0.5 mm of ARR compared with the P-TADs group.
Conclusions
In cases of maxillary protrusion and premolar extraction, the use of combined anterior and posterior miniscrews enhances incisor intrusion and minimizes torque loss of the maxillary incisors. However, this approach results in more severe ARR, likely due to the increased apical movement and composite force exerted.
7.Combined anterior and posterior miniscrews increase apical root resorption of maxillary incisors in protrusion and premolar extraction cases
Zhizun WANG ; Li MEI ; Zhenxing TANG ; Dong WU ; Yue ZHOU ; Ehab A. ABDULGHANI ; Yuan LI ; Wei ZHENG ; Yu LI
The Korean Journal of Orthodontics 2025;55(1):26-36
Objective:
Miniscrews are commonly utilized as temporary anchorage devices (TADs) in cases of maxillary protrusion and premolar extraction. This study aimed to investigate the effects and potential side effects of two conventional miniscrew configurations on the maxillary incisors.
Methods:
Eighty-two adult patients with maxillary dentoalveolar protrusion who had undergone bilateral first premolar extraction were retrospectively divided into three groups: non-TAD, two posterior miniscrews only (P-TADs), and two anterior and two posterior miniscrews combined (AP-TADs). Cone-beam computed tomography was used to evaluate the maxillary central incisors (U1).
Results:
The APTADs group had significantly greater U1 intrusion (1.99 ± 2.37 mm, n = 50) and less retroclination (1.70° ± 8.80°) compared to the P-TADs (–0.07 ± 1.65 mm and 9.45° ± 10.68°, n = 60) and non-TAD group (0.30 ± 1.61 mm and 1.91° ± 9.39°, n = 54).However, the AP-TADs group suffered from significantly greater apical root resorption (ARR) of U1 (2.69 ± 1.38 mm) than the P-TADs (1.63 ± 1.46 mm) and non-TAD group (0.89 ± 0.97 mm). Notably, the incidence of grade IV ARR was 16.6% in the AP-TADs group, significantly higher than the rates observed in the P-TADs (6.7%) and non-TAD (1.9%) groups. Multiple regression analysis revealed that after excluding tooth movement factors, the AP-TADs configuration resulted in an additional 0.5 mm of ARR compared with the P-TADs group.
Conclusions
In cases of maxillary protrusion and premolar extraction, the use of combined anterior and posterior miniscrews enhances incisor intrusion and minimizes torque loss of the maxillary incisors. However, this approach results in more severe ARR, likely due to the increased apical movement and composite force exerted.
8.Combined anterior and posterior miniscrews increase apical root resorption of maxillary incisors in protrusion and premolar extraction cases
Zhizun WANG ; Li MEI ; Zhenxing TANG ; Dong WU ; Yue ZHOU ; Ehab A. ABDULGHANI ; Yuan LI ; Wei ZHENG ; Yu LI
The Korean Journal of Orthodontics 2025;55(1):26-36
Objective:
Miniscrews are commonly utilized as temporary anchorage devices (TADs) in cases of maxillary protrusion and premolar extraction. This study aimed to investigate the effects and potential side effects of two conventional miniscrew configurations on the maxillary incisors.
Methods:
Eighty-two adult patients with maxillary dentoalveolar protrusion who had undergone bilateral first premolar extraction were retrospectively divided into three groups: non-TAD, two posterior miniscrews only (P-TADs), and two anterior and two posterior miniscrews combined (AP-TADs). Cone-beam computed tomography was used to evaluate the maxillary central incisors (U1).
Results:
The APTADs group had significantly greater U1 intrusion (1.99 ± 2.37 mm, n = 50) and less retroclination (1.70° ± 8.80°) compared to the P-TADs (–0.07 ± 1.65 mm and 9.45° ± 10.68°, n = 60) and non-TAD group (0.30 ± 1.61 mm and 1.91° ± 9.39°, n = 54).However, the AP-TADs group suffered from significantly greater apical root resorption (ARR) of U1 (2.69 ± 1.38 mm) than the P-TADs (1.63 ± 1.46 mm) and non-TAD group (0.89 ± 0.97 mm). Notably, the incidence of grade IV ARR was 16.6% in the AP-TADs group, significantly higher than the rates observed in the P-TADs (6.7%) and non-TAD (1.9%) groups. Multiple regression analysis revealed that after excluding tooth movement factors, the AP-TADs configuration resulted in an additional 0.5 mm of ARR compared with the P-TADs group.
Conclusions
In cases of maxillary protrusion and premolar extraction, the use of combined anterior and posterior miniscrews enhances incisor intrusion and minimizes torque loss of the maxillary incisors. However, this approach results in more severe ARR, likely due to the increased apical movement and composite force exerted.
9.Combined anterior and posterior miniscrews increase apical root resorption of maxillary incisors in protrusion and premolar extraction cases
Zhizun WANG ; Li MEI ; Zhenxing TANG ; Dong WU ; Yue ZHOU ; Ehab A. ABDULGHANI ; Yuan LI ; Wei ZHENG ; Yu LI
The Korean Journal of Orthodontics 2025;55(1):26-36
Objective:
Miniscrews are commonly utilized as temporary anchorage devices (TADs) in cases of maxillary protrusion and premolar extraction. This study aimed to investigate the effects and potential side effects of two conventional miniscrew configurations on the maxillary incisors.
Methods:
Eighty-two adult patients with maxillary dentoalveolar protrusion who had undergone bilateral first premolar extraction were retrospectively divided into three groups: non-TAD, two posterior miniscrews only (P-TADs), and two anterior and two posterior miniscrews combined (AP-TADs). Cone-beam computed tomography was used to evaluate the maxillary central incisors (U1).
Results:
The APTADs group had significantly greater U1 intrusion (1.99 ± 2.37 mm, n = 50) and less retroclination (1.70° ± 8.80°) compared to the P-TADs (–0.07 ± 1.65 mm and 9.45° ± 10.68°, n = 60) and non-TAD group (0.30 ± 1.61 mm and 1.91° ± 9.39°, n = 54).However, the AP-TADs group suffered from significantly greater apical root resorption (ARR) of U1 (2.69 ± 1.38 mm) than the P-TADs (1.63 ± 1.46 mm) and non-TAD group (0.89 ± 0.97 mm). Notably, the incidence of grade IV ARR was 16.6% in the AP-TADs group, significantly higher than the rates observed in the P-TADs (6.7%) and non-TAD (1.9%) groups. Multiple regression analysis revealed that after excluding tooth movement factors, the AP-TADs configuration resulted in an additional 0.5 mm of ARR compared with the P-TADs group.
Conclusions
In cases of maxillary protrusion and premolar extraction, the use of combined anterior and posterior miniscrews enhances incisor intrusion and minimizes torque loss of the maxillary incisors. However, this approach results in more severe ARR, likely due to the increased apical movement and composite force exerted.
10.Combined anterior and posterior miniscrews increase apical root resorption of maxillary incisors in protrusion and premolar extraction cases
Zhizun WANG ; Li MEI ; Zhenxing TANG ; Dong WU ; Yue ZHOU ; Ehab A. ABDULGHANI ; Yuan LI ; Wei ZHENG ; Yu LI
The Korean Journal of Orthodontics 2025;55(1):26-36
Objective:
Miniscrews are commonly utilized as temporary anchorage devices (TADs) in cases of maxillary protrusion and premolar extraction. This study aimed to investigate the effects and potential side effects of two conventional miniscrew configurations on the maxillary incisors.
Methods:
Eighty-two adult patients with maxillary dentoalveolar protrusion who had undergone bilateral first premolar extraction were retrospectively divided into three groups: non-TAD, two posterior miniscrews only (P-TADs), and two anterior and two posterior miniscrews combined (AP-TADs). Cone-beam computed tomography was used to evaluate the maxillary central incisors (U1).
Results:
The APTADs group had significantly greater U1 intrusion (1.99 ± 2.37 mm, n = 50) and less retroclination (1.70° ± 8.80°) compared to the P-TADs (–0.07 ± 1.65 mm and 9.45° ± 10.68°, n = 60) and non-TAD group (0.30 ± 1.61 mm and 1.91° ± 9.39°, n = 54).However, the AP-TADs group suffered from significantly greater apical root resorption (ARR) of U1 (2.69 ± 1.38 mm) than the P-TADs (1.63 ± 1.46 mm) and non-TAD group (0.89 ± 0.97 mm). Notably, the incidence of grade IV ARR was 16.6% in the AP-TADs group, significantly higher than the rates observed in the P-TADs (6.7%) and non-TAD (1.9%) groups. Multiple regression analysis revealed that after excluding tooth movement factors, the AP-TADs configuration resulted in an additional 0.5 mm of ARR compared with the P-TADs group.
Conclusions
In cases of maxillary protrusion and premolar extraction, the use of combined anterior and posterior miniscrews enhances incisor intrusion and minimizes torque loss of the maxillary incisors. However, this approach results in more severe ARR, likely due to the increased apical movement and composite force exerted.

Result Analysis
Print
Save
E-mail