1.Anti-tumor Mechanism of Traditional Chinese Medicine with Effect of Softening Hardness and Dissipating Mass: A Review
Yue HU ; Linfeng WANG ; Yue LI ; Rui LIU ; Baojin HUA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):276-286
The global burden of malignant tumors keeps increasing, and the increased morbidity and mortality make malignant tumors one of the major challenges to global health. Currently, malignant tumors are mainly managed by surgical resection, radiotherapy, chemotherapy, targeted therapy, and immunotherapy, which, however, usually cause serious adverse reactions, such as tissue damage, immune function inhibition, and multidrug resistance, affecting the prognosis and quality of life of the patients. Traditional Chinese medicine with low toxic and side effects and multi-target, multi-system, and multi-pathway therapeutic effects has shown positive therapeutic potential in cancer treatment. In particular, the traditional Chinese medicine with the effects of softening hardness and dissipating mass, which contains a variety of active ingredients, have shown strong inhibitory effects on tumor cells. Such medicine can not only directly attack tumor cells and inhibit their proliferation and invasion but also exert therapeutic effects by inducing apoptosis, blocking tumor-related signaling pathways, and inhibiting tumor angiogenesis. In addition, traditional Chinese medicine can improve the overall efficacy of cancer treatment by regulating the immune status of the body and reversing the drug resistance of tumor cells. Traditional Chinese medicine can exert the anti-tumor effect by regulating intracellular signaling pathways, which is one of the research hotspots in this field. Signaling pathways such as signal transducer and activator of transcription 3 (STAT3), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), and mitogen-activated protein kinase (MAPK) play a key role in the formation and development of tumors. Traditional Chinese medicine can regulate the growth, apoptosis, and metabolic process of tumor cells by affecting the activity of these signaling pathways, thus exerting the therapeutic effects on tumors. Based on these mechanisms, a large number of experimental studies and clinical trials have proved that traditional Chinese medicine has broad prospects in anti-tumor treatment. To further verify these research results and provide a basis for the clinical application of traditional Chinese medicine and the development of new drugs, a systematic review and integrated analysis of the research reports on the anti-tumor effect of traditional Chinese medicine was carried out to summarize the anti-tumor mechanisms of traditional Chinese medicine. This review is expected to promote the wide application of traditional Chinese medicine in anti-tumor treatment worldwide and bring more hope and possibility to cancer patients.
2.Modified Ditan Tang Regulates Biorhythm-related Genes in Rat Model of Non-alcoholic Fatty Liver Disease
Zhiwen PANG ; Yu LIU ; Nan SONG ; Jie WANG ; Jingxuan ZHU ; Zhen HUA ; Yupeng PEI ; Qun WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):115-124
ObjectiveTo investigate the effects of modified Ditan tang on genes related to the transcription-translation feedback loop (TTFL) of biorhythm in the rat model of non-alcoholic fatty liver disease (NAFLD) and its mechanism for prevention and treatment of NAFLD. MethodsSixty-five healthy SPF male SD rats were randomly assigned into blank (n=20), model (n=15), and low-, medium-, and high-dose (2.68, 5.36, and 10.72 g·kg-1·d-1, respectively) modified Ditan tang (n=10) groups. Other groups except the blank group were fed a high-fat diet for 12 weeks. The modified Ditan tang groups were treated with the decoction at corresponding doses by gavage, and the blank and model groups were treated with an equal volume of normal saline from the 9th week for 4 weeks. The levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in the serum were measured by an automatic biochemical analyzer. TG and non-esterified fatty acid (NEFA) assay kits were used to measure the levels of TG and NEFA in the liver. The pathological changes in the hypothalamus and liver were observed by hematoxylin-eosin staining, and the lipid deposition in the liver was observed by oil red O staining. The levels of brain-muscle ARNT-like protein 1 (BMAL1/ARNTL) in the hypothalamus and liver were determined by immunohistochemical staining. The mRNA and protein levels of BMAL1, circadian locomotor output cycles kaput (CLOCK), period circadian clock 2 (PER2), and cryptochrome1 (Cry1) in the hypothalamus and liver were determined by Real-time PCR and Western blot, respectively. ResultsCompared with the blank group, the model group showed elevated levels of TG, TC, LDL-C, AST, and ALT (P<0.01) and a lowered level of HDL-C (P<0.05) in the serum, elevated levels of TG and NEFA in the liver (P<0.01), pyknosis and deep staining of hypothalamic neuron cells, and a large number of vacuoles in the brain area. In addition, the model group showed lipid deposition in the liver, up-regulated mRNA and protein levels of CLOCK and BMAL1 (P<0.01), and down-regulated mRNA and protein levels of Cry1 and PER2 (P<0.01) in the hypothalamus and liver. Compared with the model group, all the three modified Ditan tang groups showed lowered levels of TG, TC, LDL-C, ALT, and AST (P<0.05, P<0.01) and an elevated level of HDL-C (P<0.05) in the serum, and lowered levels of TG and NEFA (P<0.05, P<0.01) in the liver. Furthermore, the three groups showed alleviated pyknosis and deep staining of hypothalamic neuron cells, reduced lipid deposition in the liver, down-regulated mRNA and protein levels of CLOCK and BMAL1 (P<0.05, P<0.01), and up-regulated mRNA and protein levels of Cry1 and PER2 (P<0.05, P<0.01) in the hypothalamus and liver. ConclusionModified Ditan tang can reduce lipid deposition in the liver and regulate the expression of CLOCK, BMAL1, Cry1, and PER2 in the TTFL of NAFLD rats.
3.Four new sesquiterpenoids from the roots of Atractylodes macrocephala
Gang-gang ZHOU ; Jia-jia LIU ; Ji-qiong WANG ; Hui LIU ; Zhi-Hua LIAO ; Guo-wei WANG ; Min CHEN ; Fan-cheng MENG
Acta Pharmaceutica Sinica 2025;60(1):179-184
The chemical constituents in dried roots of
4.Prevention and Treatment of Cardiovascular-Kidney-Metabolic Syndrome with Traditional Chinese Medicine Based on the Core Pathogenesis Evolution of "Constraint,Heat,Deficiency,Stasis,and Toxin"
Zhichao RUAN ; Jiangteng LIU ; Hua ZHANG ; Weijun HUANG ; Qiang FU ; Shidong WANG ; Jinxi ZHAO
Journal of Traditional Chinese Medicine 2025;66(7):680-684
Traditional Chinese medicine (TCM) offers a rich theoretical foundation and clinical experience for the prevention and treatment of cardiovascular-kidney-metabolic syndrome(CKM), demonstrating unique advantage. Building on previous work in managing diabetes, its complications, and chronic kidney disease, our team has proposed a five-phase evolution theory of "constraint, heat, deficiency, stasis, and toxin" as the core pathogenesis. These phases correspond to the pathological progression of constraint of phlegm-dampness, constraint transforming into heat, heat damaging qi and yin, stasis accumulated in the collateral vessels, and toxin induced by deficiency and stasis. In the prevention and treatment of CKM by TCM, it is emphasized to integrate the concept of "treating disease before it arises" with constitution theory, and incorporate the "2-5-8" prevention and treatment strategy, which combines prevention with treatment, tailors interventions to different phases, and employs comprehensive treatment modalities. Our goal is to leverage TCM's holistic advantages in preventing and treating CKM.
5.Material Basis and Its Distribution in vivo of Qili Qiangxin Capsules Analyzed by UPLC-Q-Orbitrap-MS
Jianwei ZHANG ; Jiekai HUA ; Rongsheng LI ; Qin WANG ; Xinnan CHANG ; Wei LIU ; Jie SHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):185-193
ObjectiveBased on ultra-performance liquid chromatography-quadrupole-electrostatic field orbitrap high resolution mass spectrometry(UPLC-Q-Orbitrap-MS), the chemical constituents of Qili Qiangxin capsules was identified, and their distribution in vivo was analyzed. MethodsUPLC-Q-Orbitrap-MS was used to detect the sample solution of Qili Qiangxin capsules, as well as the serum, brain, heart, lung, spleen, liver and kidney tissues of mice after oral administration. Using the Thermo Xcalibur 2.2 software, the compound information database was constructed, and the molecular formulas of compounds corresponding to the quasi-molecular ions were fitted. Based on the information of retention time, accurate relative molecular mass and fragments, the compounds and their distribution in vivo were analyzed by comparing with the data of reference substances and literature. ResultsA total of 233 compounds, including 70 terpenoids, 60 flavonoids, 23 organic acids, 17 alkaloids, 20 steroids, 7 coumarins and 36 others, were identified or predicted from Qili Qiangxin capsules, 73 of which were identified matching with standard substances. Tissue distribution results showed that 71, 17, 38, 33, 32, 58 and 43 migrating components were detected in blood, brain, heart, lung, spleen, liver and kidney, respectively. Thirty-seven components were absorbed into the blood and heart, including quinic acid, benzoylaconitine benzoylmesaconine and so on. Fourteen components were absorbed into the blood and six tissues, including calycosin, methylnissolin, formononetin, alisol B, alisol A and so on. ConclusionThis study comprehensively analyzes the chemical components of Qili Qiangxin capsules and their distribution in vivo. Among them, astragaloside Ⅳ, salvianolic acid B, ginsenoside Rb1, ginsenoside Rb3, ginsenoside Rd, ginsenoside Rg3, calycosin-7-glucoside, and sinapine may be the important components for the treatment of heart failure, which can provide useful reference for its quality control and research on pharmacodynamic material basis.
6.Randomized Double-blind Placebo-controlled Study on Clinical Efficacy and Mechanism of Shexiang Baoxinwan in Treating Stable Angina Pectoris Complicated with Anxiety and Depression in Coronary Artery Disease
Jie WANG ; Linzi LONG ; Zhiru ZHAO ; Feifei LIAO ; Jieming LU ; Tianjiao LIU ; Yuxuan PENG ; Hua QU ; Changgeng FU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):159-169
ObjectiveTo evaluate the efficacy of Shexiang Baoxinwan in treating stable angina pectoris with Qi stagnation and blood stasis syndrome in patients with coronary artery disease (CAD) complicated with anxiety and depression and explore its underlying mechanisms. MethodsThis study employed a randomized, double-blind, and placebo-controlled clinical trial design. Patients admitted to the hospital were randomly assigned to the observation group and the control group, with 52 patients in each group. Patients in the observation and control groups received Shexiang Baoxinwan and placebo, respectively, both in combination with conventional Western medication. The dose was 45.0 mg, three times daily, for a total duration of eight weeks. The primary outcome was the Seattle Angina Questionnaire (SAQ) scores before and after treatment. Secondary outcomes included changes in traditional Chinese medicine (TCM) syndrome score, the patient health questionnaire-9 (PHQ-9), generalized anxiety disorder-7 (GAD-7), inflammatory markers [interleukin-18 (IL-18), interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), CD40, etc.], monoamine neurotransmitters [e.g., dopamine (DA)], vascular endothelial function markers [e.g., endothelin-1(ET-1)], adipokines, and ischemia-modified albumin (IMA). Adverse reactions were also recorded. ResultsA total of 92 patients completed the study, with 44 in the observation group and 48 in the control group. Compared with baseline, both groups showed significant decreases in PHQ-9, GAD-7, and TCM syndrome scores following treatment (P<0.05), along with a significant increase in SAQ scores (P<0.05). In the observation group, DA levels were significantly increased (P<0.05), while levels of IL-18, TNF-α, CD40, ET-1, and IMA were decreased (P<0.05). In contrast, the control group exhibited significantly increased CD40 levels (P<0.05). Compared with the control group after treatment, the observation group showed significant improvements in the SAQ dimensions of physical limitation, angina stability, treatment satisfaction, and disease perception, as well as in TCM syndrome score, PHQ-9 score, IL-18, CD40, ET-1, and IMA (P<0.05). No adverse reactions were observed in either group during treatment. ConclusionShexiang Baoxinwan can improve anxiety and depression, alleviate angina symptoms, and reduce TCM symptoms of Qi stagnation and blood stasis in CAD patients. The mechanism may involve anti-inflammation, improvement of vascular endothelial function, reduction of IMA, and increase of monoamine neurotransmitter levels.
7.Randomized Double-blind Placebo-controlled Study on Clinical Efficacy and Mechanism of Shexiang Baoxinwan in Treating Stable Angina Pectoris Complicated with Anxiety and Depression in Coronary Artery Disease
Jie WANG ; Linzi LONG ; Zhiru ZHAO ; Feifei LIAO ; Jieming LU ; Tianjiao LIU ; Yuxuan PENG ; Hua QU ; Changgeng FU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):159-169
ObjectiveTo evaluate the efficacy of Shexiang Baoxinwan in treating stable angina pectoris with Qi stagnation and blood stasis syndrome in patients with coronary artery disease (CAD) complicated with anxiety and depression and explore its underlying mechanisms. MethodsThis study employed a randomized, double-blind, and placebo-controlled clinical trial design. Patients admitted to the hospital were randomly assigned to the observation group and the control group, with 52 patients in each group. Patients in the observation and control groups received Shexiang Baoxinwan and placebo, respectively, both in combination with conventional Western medication. The dose was 45.0 mg, three times daily, for a total duration of eight weeks. The primary outcome was the Seattle Angina Questionnaire (SAQ) scores before and after treatment. Secondary outcomes included changes in traditional Chinese medicine (TCM) syndrome score, the patient health questionnaire-9 (PHQ-9), generalized anxiety disorder-7 (GAD-7), inflammatory markers [interleukin-18 (IL-18), interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), CD40, etc.], monoamine neurotransmitters [e.g., dopamine (DA)], vascular endothelial function markers [e.g., endothelin-1(ET-1)], adipokines, and ischemia-modified albumin (IMA). Adverse reactions were also recorded. ResultsA total of 92 patients completed the study, with 44 in the observation group and 48 in the control group. Compared with baseline, both groups showed significant decreases in PHQ-9, GAD-7, and TCM syndrome scores following treatment (P<0.05), along with a significant increase in SAQ scores (P<0.05). In the observation group, DA levels were significantly increased (P<0.05), while levels of IL-18, TNF-α, CD40, ET-1, and IMA were decreased (P<0.05). In contrast, the control group exhibited significantly increased CD40 levels (P<0.05). Compared with the control group after treatment, the observation group showed significant improvements in the SAQ dimensions of physical limitation, angina stability, treatment satisfaction, and disease perception, as well as in TCM syndrome score, PHQ-9 score, IL-18, CD40, ET-1, and IMA (P<0.05). No adverse reactions were observed in either group during treatment. ConclusionShexiang Baoxinwan can improve anxiety and depression, alleviate angina symptoms, and reduce TCM symptoms of Qi stagnation and blood stasis in CAD patients. The mechanism may involve anti-inflammation, improvement of vascular endothelial function, reduction of IMA, and increase of monoamine neurotransmitter levels.
8.Multi-Parameter MRI for Evaluating Glymphatic Impairment and White-Matter Abnormalities and Discriminating Refractory Epilepsy in Children
Lu QIU ; Miaoyan WANG ; Surui LIU ; Bo PENG ; Ying HUA ; Jianbiao WANG ; Xiaoyue HU ; Anqi QIU ; Yakang DAI ; Haoxiang JIANG
Korean Journal of Radiology 2025;26(5):485-497
Objective:
To explore glymphatic impairment in pediatric refractory epilepsy (RE) using multi-parameter magnetic resonance imaging (MRI), assess its relationship with white-matter (WM) abnormalities and clinical indicators, and preliminarily evaluate the performance of multi-parameter MRI in discriminating RE from drug-sensitive epilepsy (DSE).
Materials and Methods:
We retrospectively included 70 patients with DSE (mean age, 9.7 ± 3.5 years; male:female, 37:33) and 26 patients with RE (9.0 ± 2.9 years; male:female, 12:14). The diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index as well as fractional anisotropy (FA), mean diffusivity (MD), and nodal efficiency values were measured and compared between patients with RE and DSE. With sex and age as covariables, differences in the FA and MD values were analyzed using tract-based spatial statistics, and nodal efficiency was analyzed using a linear model. Pearson’s partial correlation was analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the discrimination performance of the MRI-based machine-learning models through five-fold cross-validation.
Results:
In the RE group, FA decreased and MD increased in comparison with the corresponding values in the DSE group, and these differences mainly involved the callosum, right and left corona radiata, inferior and superior longitudinal fasciculus, and posterior thalamic radiation (threshold-free cluster enhancement, P < 0.05). The RE group also showed reduced nodal efficiency, which mainly involved the limbic system, default mode network, and visual network (false discovery rate, P < 0.05), and significantly lower DTI-ALPS index (F = 2.0, P = 0.049). The DTI-ALPS index was positively correlated with FA (0.25 ≤ r ≤ 0.32) and nodal efficiency (0.22 ≤ r ≤ 0.37), and was negatively correlated with the MD (-0.24 ≤ r≤ -0.34) and seizure frequency (r = -0.47). A machine-learning model combining DTI-ALPS, FA, MD, and nodal efficiency achieved a cross-validated ROC curve area of 0.83 (sensitivity, 78.2%; specificity, 84.8%).
Conclusion
Pediatric patients with RE showed impaired glymphatic function in comparison with patients with DSE, which was correlated with WM abnormalities and seizure frequency. Multi-parameter MRI may be feasible for distinguishing RE from DSE.
9.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
10.Multi-Parameter MRI for Evaluating Glymphatic Impairment and White-Matter Abnormalities and Discriminating Refractory Epilepsy in Children
Lu QIU ; Miaoyan WANG ; Surui LIU ; Bo PENG ; Ying HUA ; Jianbiao WANG ; Xiaoyue HU ; Anqi QIU ; Yakang DAI ; Haoxiang JIANG
Korean Journal of Radiology 2025;26(5):485-497
Objective:
To explore glymphatic impairment in pediatric refractory epilepsy (RE) using multi-parameter magnetic resonance imaging (MRI), assess its relationship with white-matter (WM) abnormalities and clinical indicators, and preliminarily evaluate the performance of multi-parameter MRI in discriminating RE from drug-sensitive epilepsy (DSE).
Materials and Methods:
We retrospectively included 70 patients with DSE (mean age, 9.7 ± 3.5 years; male:female, 37:33) and 26 patients with RE (9.0 ± 2.9 years; male:female, 12:14). The diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index as well as fractional anisotropy (FA), mean diffusivity (MD), and nodal efficiency values were measured and compared between patients with RE and DSE. With sex and age as covariables, differences in the FA and MD values were analyzed using tract-based spatial statistics, and nodal efficiency was analyzed using a linear model. Pearson’s partial correlation was analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the discrimination performance of the MRI-based machine-learning models through five-fold cross-validation.
Results:
In the RE group, FA decreased and MD increased in comparison with the corresponding values in the DSE group, and these differences mainly involved the callosum, right and left corona radiata, inferior and superior longitudinal fasciculus, and posterior thalamic radiation (threshold-free cluster enhancement, P < 0.05). The RE group also showed reduced nodal efficiency, which mainly involved the limbic system, default mode network, and visual network (false discovery rate, P < 0.05), and significantly lower DTI-ALPS index (F = 2.0, P = 0.049). The DTI-ALPS index was positively correlated with FA (0.25 ≤ r ≤ 0.32) and nodal efficiency (0.22 ≤ r ≤ 0.37), and was negatively correlated with the MD (-0.24 ≤ r≤ -0.34) and seizure frequency (r = -0.47). A machine-learning model combining DTI-ALPS, FA, MD, and nodal efficiency achieved a cross-validated ROC curve area of 0.83 (sensitivity, 78.2%; specificity, 84.8%).
Conclusion
Pediatric patients with RE showed impaired glymphatic function in comparison with patients with DSE, which was correlated with WM abnormalities and seizure frequency. Multi-parameter MRI may be feasible for distinguishing RE from DSE.

Result Analysis
Print
Save
E-mail