1.Mechanism of Shaoyaotang in Modulating MDSCs-related Immunosuppressive Microenvironment in Prevention and Treatment of Colitis-associated Carcinogenesis
Xue CHEN ; Chenglei WANG ; Bingwei YANG ; Haoyu ZHAI ; Ying WU ; Weidong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):10-19
		                        		
		                        			
		                        			ObjectiveTo explore the mechanism of Shaoyaotang in the prevention and treatment of colitis-associated carcinogenesis (CAC) based on myeloid-derived suppressor cells (MDSCs)-related immunosuppressive microenvironment. MethodsA total of 140 six-week-old SPF FVB male mice were randomly divided into seven groups: Blank group, Shaoyaotang without model group (7.12 g·kg-1), model group, sulfasalazine group (0.52 g·kg-1), Shaoyaotang low-dose group (3.56 g·kg-1), Shaoyaotang medium-dose group (7.12 g·kg-1) and Shaoyaotang high-dose group (14.24 g·kg-1), with 20 mice in each group. The blank control group and the Shaoyaotang without model group received a single intraperitoneal injection of physiological saline (10 mg·kg-1), while the other five groups were given a single intraperitoneal injection of azoxymethane (AOM) (10 mg·kg-1). After 1 week, the mice were given drinking water containing 2% dextran sulfate sodium (DSS) for 1 week, followed by normal drinking water for 2 weeks. This cycle was repeated three times over a total period of 14 weeks to establish the CAC mouse model. Each group was administered gavage once daily for 2 weeks starting on the 14th day of the experiment, followed by three times a week until the end of the experiment. The body weight of the mice was recorded weekly. Mice were sacrificed on the 28th and 98th days of the experiment. After dissection, the colon length, colon weight, spleen weight, tumor size, and tumor number were measured. Hematoxylin and eosin (HE) staining was used to assess the pathological morphology of colon tumor tissue. Flow cytometry was used to detect MDSCs, regulatory T cells (Tregs), CD4+ T cells, CD8+ T cells, and the CD4+/CD8+ T cell ratio in the spleen. Immunohistochemistry was used to detect the expression levels of programmed cell death protein-1 (PD-1), programmed cell death ligand 1 (PD-L1), phosphorylated AMP-activated protein kinase (p-AMPK), phosphorylated nuclear factor-κB (p-NF-κB), and hypoxia-inducible factor 1α (HIF-1α) in the colon tissue. ResultsOn day 14, compared with the blank group, the body weight of the model group was significantly reduced (P<0.01), reaching its lowest point on day 28 (23.39 ± 0.95 ) g. On days 28 and 98, compared with the blank group, the colon length in the model group was significantly shortened (P<0.01), the colon index significantly increased (P<0.01), the spleen index significantly increased (P<0.01), and the tumor load significantly increased (P<0.01). HE staining showed that in the model group, tumor cells, a large number of inflammatory cell infiltrates, goblet cell disappearance, and crypt loss were observed. In each dose group of Shaoyaotang, the damage to the colonic mucosa, inflammatory cell infiltration, and crypt structure destruction were alleviated. Compared with the model group, the body weight of mice in each dose group of Shaoyaotang increased. On day 98, the colon length was significantly increased (P<0.01), the colon index significantly decreased (P<0.01), the spleen index significantly decreased (P<0.01), and the tumor burden significantly decreased (P<0.01) in each Shaoyaotang dose group. On days 28 and 98, MDSCs and Tregs in the spleen of the medium- and high-dose Shaoyaotang groups were significantly reduced (P<0.01), while CD4+ T cells and the CD4+/CD8+ T cell ratio were significantly increased (P<0.01). The proportion of CD8+ T cells in the spleen and the expression levels of PD-1 and PD-L1 in the colon tissues of mice in each Shaoyaotang dose group were significantly increased to varying degrees (P<0.05, P<0.01). On days 28 and 98, the expression of p-AMPK-positive cells in the colon tissue of the medium- and high-dose Shaoyaotang groups was significantly increased (P<0.01), while the expression of p-NF-κB and HIF-1α was significantly reduced (P<0.01). ConclusionShaoyaotang can regulate MDSC recruitment and modulate the immune function of T lymphocyte subsets to inhibit the occurrence and development of AOM/DSS-induced CAC in mice. The mechanism may be related to the activation of the AMPK/NF-κB/HIF-1α pathway. 
		                        		
		                        		
		                        		
		                        	
2.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
		                        		
		                        			 Objective:
		                        			Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms. 
		                        		
		                        			Methods:
		                        			By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway. 
		                        		
		                        			Results:
		                        			In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway. 
		                        		
		                        			Conclusion
		                        			In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair. 
		                        		
		                        		
		                        		
		                        	
3.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
		                        		
		                        			 Objective:
		                        			Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms. 
		                        		
		                        			Methods:
		                        			By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway. 
		                        		
		                        			Results:
		                        			In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway. 
		                        		
		                        			Conclusion
		                        			In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair. 
		                        		
		                        		
		                        		
		                        	
4.Frontal and Parietal Alpha Asymmetry as Biomarkers for Negative Symptoms in Schizophrenia
Yao-Cheng WU ; Chih-Chung HUANG ; Yi-Guang WANG ; Chu-Ya YANG ; Wei-Chou CHANG ; Chuan-Chia CHANG ; Hsin-An CHANG
Psychiatry Investigation 2025;22(4):435-441
		                        		
		                        			 Objective:
		                        			Negative symptoms in schizophrenia indicate a poor prognosis. However, the mechanisms underlying the development of negative symptoms remain unclear. This study investigated the relationship between negative symptoms in schizophrenia and frontal alpha asymmetry (FAA). 
		                        		
		                        			Methods:
		                        			The study used a 32-channel electroencephalography to acquire alpha power in 4 target-paired sites in each patient. Regional alpha asymmetry was calculated based on the alpha power using EEGLAB Frontal Alpha Asymmetry Toolbox. 
		                        		
		                        			Results:
		                        			Sixty schizophrenia patients with predominant negative symptoms (PNS), 72 stabilized schizophrenia (SS) patients, and 73 healthy control (HC) participants were enrolled in this study. No significant differences were observed in FAA between the PNS and SS groups, although both groups exhibited reduced P3-P4 alpha asymmetry compared to HCs. A positive correlation was found between F7-F8 alpha asymmetry and illness duration. Additionally, a predictive model based on P3-P4 alpha asymmetry scores was able to differentiate schizophrenia patients from HCs, achieving a sensitivity of 71.2% and a specificity of 72.6%. 
		                        		
		                        			Conclusion
		                        			This study highlighted that parietal alpha asymmetry could serve as a valuable diagnostic tool for schizophrenia. 
		                        		
		                        		
		                        		
		                        	
5.Inhibitory effect of hydroxy safflower yellow A on neuronal pyroptosis after glucose-oxygen deprivation/reglucose-reoxygenation treatment
Zeqian WANG ; Yanzhe DUAN ; Yige WU ; Dong MA ; Jianjun HUANG ; Yuqing YAN ; Lijuan SONG
Chinese Journal of Tissue Engineering Research 2025;29(19):4044-4051
		                        		
		                        			
		                        			BACKGROUND:Hydroxy safflower yellow A has anti-ischemia,anti-oxidation,anti-thrombotic and anti-inflammatory effects.Whether it affects neuronal pyroptosis after glucose-oxygen deprivation/reglucose-reoxygenation is still unclear. OBJECTIVE:To investigate the protective effect of hydroxy safflower yellow A on neuronal pyroptosis and its mechanism. METHODS:HT22 cells in logarithmic growth phase were randomly divided into five groups:normal group,model group,hydroxy safflower yellow A group,colivelin group,and colivelin+hydroxy safflower yellow A group.HT22 cells were treated with glucose-oxygen deprivation/reglucose-reoxygenation to establish neuronal pyroptosis model,and then treated with STAT3 agonist Colivelin and hydroxy safflower yellow A.JC-1 probe was employed to assess changes in mitochondrial membrane potential.Reactive oxygen species kit was used to determine the content of reactive oxygen species in cells.GSDMD/TUNEL staining was conducted to observe cell pyroptosis.Immunofluorescence analysis was performed to detect STAT3 and GSDMD protein expression.RT-PCR was utilized for assessing mRNA expression levels of STAT3,NLRP3,and Caspase-1.Western blot assay was utilized to measure the protein expression levels of p-STAT3,NLRP3,GSDMD,Cleaved-caspase-1,and interleukin-1β. RESULTS AND CONCLUSION:(1)Compared with the normal group,the number of pyroptotic cells increased in HT22 cells in the model group along with a significant increase in protein expression levels of p-STAT3,NLRP3,Cleaved-caspase-1,GSDMD,and interleukin-1β.Compared with the model group,the number of pyroptotic cells reduced,and the expression of pyroptosis-related proteins significantly decreased in the hydroxy safflower yellow A group.(2)In comparison with the model group,pyroptosis worsened in the colivelin group where mitochondrial membrane potential decreased along with elevated reactive oxygen species content and increased mRNA expression levels of STAT3,NLRP3,and Caspase-1,as well as increased protein expression levels of p-STAT3,NLRP3,GSDMD,Cleaved-caspase-1,and interleukin-1β.Compared with the Colivelin group,above indexes were improved in the colivelin+hydroxy safflower yellow A group.These results suggest that hydroxy safflower yellow A plays a neuroprotective role through STAT3 signaling pathway to inhibit HT22 pyroptosis after glucose-oxygen deprivation/reglucose-reoxygenation treatment.
		                        		
		                        		
		                        		
		                        	
6.Association analyses of early medication clocking-in trajectory with smart tools and treatment outcome in pulmonary tuberculosis patients
Chunhua XU ; Zheyuan WU ; Yong WU ; Qing WANG ; Zichun WANG ; Nan QIN ; Xinru LI ; Yucong YAO ; Kehua YI ; Yi HU
Shanghai Journal of Preventive Medicine 2025;37(3):210-214
		                        		
		                        			
		                        			ObjectiveTo construct a group-based trajectory model (GBTM) for early medication adherence check-in, and to analyze the relationship between different trajectories and treatment outcomes in tuberculosis patients using data that were generated from smart tools for monitoring their medication adherence and check-in. MethodsFrom October 1, 2022 to September 30, 2023, a total of 163 pulmonary tuberculosis patients diagnosed in Fengxian District were selected as the study subjects. The GBTM was utilized to analyze the weekly active check-in trajectories of the subjects during the first 4 weeks and establish different trajectory groups. The χ² tests were employed to compare the differences between groups and logistic regression analysis was conducted to explore the relationship between different trajectory groups and treatment outcomes. ResultsA total of four groups were generated by GBTM analyses, of which a low level of punch card was maintained in group A, 6% of the drug users increased rapidly from a low level in group B, 17% of drug users increased gradually from a low level in group C, and 18% of drug users maintained a high level of punch card in group D. The trajectory group was divided into two groups according to homogeneity, namely the low level medication punch card group (group A) and the high level medication punch card group (group B, group C, and group D). The results of multivariate logistic regression analyses revealed that low-level medication check-in (OR=3.250, 95%CI: 1.089‒9.696), increasing age (OR=1.030, 95%CI: 1.004‒1.056), and not undergoing sputum examination at the end of the fifth month (OR=2.746, 95%CI: 1.090‒7.009) were significantly associated with poor treatment outcomes. ConclusionThe medication check-in trajectory of pulmonary tuberculosis patients within the first 4 weeks is correlated with adverse outcomes, or namely consistent low-level medication adherence check-ins are associated with poor treatment outcomes, while high-level medication adherence check-ins are associated with a lower incidence of adverse outcomes. 
		                        		
		                        		
		                        		
		                        	
7.A whole genome analysis of two coxsackievirus A2 strains isolated from patients with herpetic angina in Shanghai
Jingyi ZHANG ; Jiayu WANG ; Run LI ; Fanghao FANG ; Wencheng WU ; Wanju ZHANG ; Min CHEN ; Xin CHEN ; Zheng TENG
Shanghai Journal of Preventive Medicine 2025;37(3):215-221
		                        		
		                        			
		                        			ObjectiveTo understand the whole genome characteristics and the information for genetic evolution in the two coxsackievirus A2 (CVA2) strains isolated from patients with herpangina in Shanghai, and to provide a scientific basis for the prevention and treatment of herpetic angina. MethodsTwo CAV2 strains isolated from patients with herpetic angina in Shanghai were performed whole genome sequencing and analysis for phylogenetics, nucleotide homology, and evolution. ResultsA phylogenetic analysis of the VP1 region revealed that the two Shanghai strains both belonged to CVA2 genotype D, with the highest homology to OL357660, a strain from Yunnan. The average nucleotide identity (ANI) of the whole genome between the two Shanghai strains was 98.88%, and the ANI of the whole genome comparisons to other CVA2 genotype D strains and CVA2 genotypes A-C strains ranged from 84.64% to 97.42% and from 79.21% to 84.20%, respectively. The two Shanghai strains had low homology in the 3D region compared to the existing CVA2 strains. The phylogenetic analysis and sliding window nucleotide similarity analysis indicated that the two Shanghai strains and the Yunnan OL357660 strain might constitute a new genetic lineage. ConclusionThe two CVA2 strains isolated for the first time in Shanghai are assigned to genotype D (GenBank: PQ130039 and PQ130040), which is identical to the existing subtype prevalent in China. As represented by the Shanghai strains, a new CVA2 genetic lineage is been identified. This study has enriched the data on genetic evolution and genetic variation of CVA2 in Shanghai, indicating the requirement to strengthen surveillance for the epidemiological pattern of CVA2. 
		                        		
		                        		
		                        		
		                        	
8.Measles, rubella, and mumps antibody seroprevalence among the children aged 18 years and younger in Karamay City, Xinjiang Uygur Autonomous Region
Meili WU ; Xia LI ; Ling ZUO ; Liping RONG ; Jing WANG ; Feng WANG
Shanghai Journal of Preventive Medicine 2025;37(3):239-243
		                        		
		                        			
		                        			ObjectiveTo understand the measles, rubella, and mumps antibody seroprevalence among the children aged 18 years and younger in Karamay City, and to evaluate the effectiveness of vaccination. MethodsA stratified whole cluster random sampling method was used to investigate the antibody seroprevalence of measles, rubella, and mumps among the healthy children aged 18 years and younger in Karamay City, and to further analyze the positive antibody rates and the geometric mean concentration (GMC) of antibodies. ResultsA total of 620 people were investigated, and the positive rates of IgG to measles, rubella, and mumps were 72.74%,62.26%, and 86.45%, respectively, with a GMC of308.94 mIU·mL-1, 21.81 mIU·mL-1, and 249.10 U·mL-1. There were statistically significant differences in the positive rates of antibodies to measles, rubella, and mumps among different age groups (χ2measles=76.707, P<0.001; χ2rubella=60.804, P<0.001; χ2mumps=35.407, P<0.001). The differences in positive rates were statistically significant among individuals with different intervals from the time of their last dose vaccination (χ2measles=60.533, P<0.001; χ2rubella=46.331, P<0.001; χ2mumps=22.825, P<0.001). ConclusionThe antibody levels of measles, rubella and mumps among the people aged 18 years and younger in Karamay City are found to be low. Two doses of measles-mumps-rubella (MMR) vaccine should be given to children born before 2020, and if necessary, supplementary immunization with MMR vaccine should be carried out before they are enrolled in nursery and kindergarten. Additionally, regular population-based antibody surveillance should be conducted to promptly identify the people with weak immunity, which is conducive to effectively reducing and controlling the epidemic situation of measles, rubella and mumps in schools. 
		                        		
		                        		
		                        		
		                        	
9.Ultrasonographic characteristics of renal artery involvement in acute Stanford type A aortic dissection and its relationship with renal function: A retrospective cohort study
Qiushan QING ; Xin WEI ; Hong ZHENG ; Zheng WANG ; Changxue WU ; Peirui CHEN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(04):527-533
		                        		
		                        			
		                        			Objective  To investigate the ultrasonographic characteristics of acute Stanford type A aortic dissection (ATAAD) involving the renal arteries and their relationship with renal function. Methods  Patients with ATAAD admitted to Deyang People's Hospital from February 2013 to May 2023 were selected for the study. Based on whether the renal arteries were involved in the dissection, the patients were divided into two groups: a renal artery involvement group and a renal artery non-involvement group. General data and ultrasound characteristics of the two groups were compared. Logistic regression analysis and model correction were performed to analyze the relationship between ultrasound characteristics and renal function involvement in ATAAD patients. Receiver operating characteristic (ROC) curves were used to evaluate the predictive value of ultrasound characteristics for renal artery involvement in ATAAD patients. Additionally, patients in the renal artery involvement group were divided into normal renal function and abnormal renal function subgroups based on serum blood urea nitrogen (BUN) and serum creatinine (Scr) levels. Clinical data of the two subgroups were compared, and a log-binomial model was used to analyze the risk effects of ultrasound characteristics for abnormal renal function. Pearson correlation analysis was performed to assess the correlation between ultrasound characteristics of renal artery involvement and renal function indicators. Results  A total of 163 patients were included, consisting of 106 males and 57 females, with a mean age of (50.06±10.46) years (ranging from 20 to 85 years). Significant differences in gender, Scr, and BUN were observed between the renal artery involvement group and the renal artery non-involvement group (P<0.001). Compared to the renal artery non-involvement group, the renal artery involvement group had an increased ascending aorta diameter, a greater proportion of ascending aortic dilation and poor renal perfusion (P<0.05). Logistic regression analysis indicated that ascending aorta diameter, ascending aortic dilation, and poor renal perfusion were independent factors for renal artery involvement (P<0.05). Ultrasonographic characteristics showed good predictive ability for renal artery involvement in ATAAD patients. Furthermore, the combination of the three characteristics yielded a higher predictive value for renal artery involvement. Compared to the normal renal function group, the abnormal renal function group had higher BUN and Scr levels, increased ascending aortic diameter, a greater proportion of ascending aortic dilation and poor renal perfusion (P<0.05). The log-binomial model analysis revealed that the risk ratios for ascending aortic diameter, ascending aortic dilation, and poor renal perfusion were statistically significant both before and after adjustment (P<0.05). Pearson correlation analysis revealed that ascending aortic diameter, ascending aortic dilation, and poor renal perfusion were strongly correlated with renal function parameters (P<0.05). Conclusion Ultrasound characteristics of ATAAD involving the renal arteries are associated with renal function. Ascending aorta diameter, ascending aortic dilation, and poor renal perfusion are independent risk factors for abnormal renal function.
		                        		
		                        		
		                        		
		                        	
10.Aerobic Exercise Improves Cognitive Function of Aging Mice by Regulating Intestinal Flora-metabolite Network
An-Feng WANG ; Tong WU ; Hu ZHANG ; Ji-Ling LIANG ; Ning CHEN
Progress in Biochemistry and Biophysics 2025;52(6):1484-1498
		                        		
		                        			
		                        			ObjectiveThis study aimed to explore the effects of aerobic exercise on cognitive function in aging mice and to elucidate the underlying molecular mechanisms by which aerobic exercise ameliorates cognitive decline through the regulation of gut microbiota-metabolite network. By providing novel insights into the interplay between exercise, gut microbiota, and cognitive health, this research seeks to offer a robust theoretical foundation for developing anti-aging strategies and personalized exercise interventions targeting aging-related cognitive dysfunction. MethodsUsing naturally aged C57BL/6 mice as the experimental model, this study employed a multi-omics approach combining 16S rRNA sequencing and wide-targeted metabolomics analysis. A total of 18 mice were divided into 3 groups: young control (YC, 4-month-old), old control (OC, 21-month-old), and old+exercise (OE, 21-month-old with 12 weeks of moderate-intensity treadmill training) groups. Behavioral assessments, including the Morris water maze (MWM) test, were conducted to evaluate cognitive function. Histopathological examinations of brain tissue sections provided morphological evidence of neuronal changes. Fecal samples were collected for gut microbiota and metabolite profiling via 16S rRNA sequencing and ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-QTOF-MS). Data were analyzed using a combination of statistical and bioinformatics tools to identify differentially abundant microbial taxa and metabolites and to construct interaction networks between them. ResultsBehavioral tests revealed that 12 weeks of aerobic exercise significantly improved spatial learning and memory capacity of aged mice, as evidenced by reduced escape latency and increased target area exploration and platform crossings in the MWM. Histopathological analysis demonstrated that exercise mitigated aging-related neuronal damage in the hippocampus, enhancing neuronal density and morphology. 16S rRNA sequencing indicated that exercise increased gut microbiota α‑diversity and enriched beneficial bacterial genera, including Bifidobacterium, Parabacteroides, and Rikenella. Metabolomics analysis identified 32 differentially regulated metabolites between OC and OE groups, with 94 up-regulated and 30 down-regulated in the OE group when compared with OC group. These metabolites were primarily involved in energy metabolism reprogramming (e.g., L-homocitrulline), antioxidant defense (e.g., L-carnosine), neuroprotection (e.g., lithocholic acid), and DNA repair (e.g., ADP-ribose). Network analysis further revealed strong positive correlations between specific bacteria and metabolites, such as Parabacteroides with ADP-ribose and Bifidobacterium with lithocholic acid, suggesting potential neuroprotective pathways mediated by the gut microbiota-metabolite axis. ConclusionThis study provides comprehensive evidence that aerobic exercise elicits cognitive benefits in aging mice by modulating the gut microbiota-metabolite network. These findings highlight three key mechanisms: (1) the proliferation of beneficial gut bacteria enhances metabolic reprogramming to boost DNA repair pathways; (2) elevated neuroinflammation-inhibiting factors reduce neurodegenerative changes; and (3) enhanced antioxidant defenses maintain neuronal homeostasis. These results underscore the critical role of the “microbiota-metabolite-brain” axis in mediating the cognitive benefits of aerobic exercise. This study not only advances our understanding of the gut-brain axis in aging but also offers a scientific basis for developing personalized exercise and probiotic-based interventions targeting aging-related cognitive decline. Future research should further validate these mechanisms in non-human primates and human clinical trials to establish the translational potential of exercise-induced gut microbiota-metabolite modulation for combating neurodegenerative diseases. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail