1.Effect of nanoparticles of different stiffness combined with menthol/curcumol on mechanical properties of bEnd.3 cells.
Zi-Shuo GUO ; Yi ZHANG ; Kai-Li YANG ; Di-Lei WANG ; Wan-Ling CHEN ; Xiao-Jing WANG ; Lin-Ying ZHONG ; Peng-Yue LI ; Shou-Ying DU
China Journal of Chinese Materia Medica 2023;48(2):390-398
This study aimed to investigate the effects of nanoparticles PLGA-NPs and mesoporous silicon nanoparticles(MSNs) of different stiffness before and after combination with menthol or curcumol on the mechanical properties of bEnd.3 cells. The particle size distributions of PLGA-NPs and MSNs were measured by Malvern particle size analyzer, and the stiffness of the two nanoparticles was quantified by atomic force microscopy(AFM). The bEnd.3 cells were cultured in vitro, and the cell surface morphology, roughness, and Young's modulus were examined to characterize the roughness and stiffness of the cell surface. The changes in the mechanical properties of the cells were observed by AFM, and the structure and expression of cytoskeletal F-actin were observed by a laser-scanning confocal microscope. The results showed that both nanoparticles had good dispersion. The particle size of PLGA-NPs was(98.77±2.04) nm, the PDI was(0.140±0.030), and Young's modulus value was(104.717±8.475) MPa. The particle size of MSNs was(97.47±3.92) nm, the PDI was(0.380±0.016), and Young's modulus value was(306.019±8.822) MPa. The stiffness of PLGA-NPs was significantly lower than that of MSNs. After bEnd.3 cells were treated by PLGA-NPs and MSNs separately, the cells showed fine pores on the cell surface, increased roughness, decreased Young's modulus, blurred and broken F-actin bands, and reduced mean gray value. Compared with PLGA-NPs alone, PLGA-NPs combined with menthol or curcumol could allow deepened and densely distributed surface pores of bEnd.3 cells, increase roughness, reduce Young's modulus, aggravate F-actin band breakage, and diminish mean gray value. Compared with MSNs alone, MSNs combined with menthol could allow deepened and densely distributed surface pores of bEnd.3 cells, increase roughness, reduce Young's modulus, aggravate F-actin band breakage, and diminish mean gray value, while no significant difference was observed in combination with curcumol. Therefore, it is inferred that the aromatic components can increase the intracellular uptake and transport of nanoparticles by altering the biomechanical properties of bEnd.3 cells.
Animals
;
Mice
;
Menthol/pharmacology*
;
Actins/metabolism*
;
Endothelial Cells/metabolism*
;
Nanoparticles/chemistry*
2.Association of Overlapped and Un-overlapped Comorbidities with COVID-19 Severity and Treatment Outcomes: A Retrospective Cohort Study from Nine Provinces in China.
Yan MA ; Dong Shan ZHU ; Ren Bo CHEN ; Nan Nan SHI ; Si Hong LIU ; Yi Pin FAN ; Gui Hui WU ; Pu Ye YANG ; Jiang Feng BAI ; Hong CHEN ; Li Ying CHEN ; Qiao FENG ; Tuan Mao GUO ; Yong HOU ; Gui Fen HU ; Xiao Mei HU ; Yun Hong HU ; Jin HUANG ; Qiu Hua HUANG ; Shao Zhen HUANG ; Liang JI ; Hai Hao JIN ; Xiao LEI ; Chun Yan LI ; Min Qing LI ; Qun Tang LI ; Xian Yong LI ; Hong De LIU ; Jin Ping LIU ; Zhang LIU ; Yu Ting MA ; Ya MAO ; Liu Fen MO ; Hui NA ; Jing Wei WANG ; Fang Li SONG ; Sheng SUN ; Dong Ting WANG ; Ming Xuan WANG ; Xiao Yan WANG ; Yin Zhen WANG ; Yu Dong WANG ; Wei WU ; Lan Ping WU ; Yan Hua XIAO ; Hai Jun XIE ; Hong Ming XU ; Shou Fang XU ; Rui Xia XUE ; Chun YANG ; Kai Jun YANG ; Sheng Li YUAN ; Gong Qi ZHANG ; Jin Bo ZHANG ; Lin Song ZHANG ; Shu Sen ZHAO ; Wan Ying ZHAO ; Kai ZHENG ; Ying Chun ZHOU ; Jun Teng ZHU ; Tian Qing ZHU ; Hua Min ZHANG ; Yan Ping WANG ; Yong Yan WANG
Biomedical and Environmental Sciences 2020;33(12):893-905
Objective:
Several COVID-19 patients have overlapping comorbidities. The independent role of each component contributing to the risk of COVID-19 is unknown, and how some non-cardiometabolic comorbidities affect the risk of COVID-19 remains unclear.
Methods:
A retrospective follow-up design was adopted. A total of 1,160 laboratory-confirmed patients were enrolled from nine provinces in China. Data on comorbidities were obtained from the patients' medical records. Multivariable logistic regression models were used to estimate the odds ratio (
Results:
Overall, 158 (13.6%) patients were diagnosed with severe illness and 32 (2.7%) had unfavorable outcomes. Hypertension (2.87, 1.30-6.32), type 2 diabetes (T2DM) (3.57, 2.32-5.49), cardiovascular disease (CVD) (3.78, 1.81-7.89), fatty liver disease (7.53, 1.96-28.96), hyperlipidemia (2.15, 1.26-3.67), other lung diseases (6.00, 3.01-11.96), and electrolyte imbalance (10.40, 3.00-26.10) were independently linked to increased odds of being severely ill. T2DM (6.07, 2.89-12.75), CVD (8.47, 6.03-11.89), and electrolyte imbalance (19.44, 11.47-32.96) were also strong predictors of unfavorable outcomes. Women with comorbidities were more likely to have severe disease on admission (5.46, 3.25-9.19), while men with comorbidities were more likely to have unfavorable treatment outcomes (6.58, 1.46-29.64) within two weeks.
Conclusion
Besides hypertension, diabetes, and CVD, fatty liver disease, hyperlipidemia, other lung diseases, and electrolyte imbalance were independent risk factors for COVID-19 severity and poor treatment outcome. Women with comorbidities were more likely to have severe disease, while men with comorbidities were more likely to have unfavorable treatment outcomes.
Adult
;
Aged
;
COVID-19/virology*
;
China/epidemiology*
;
Comorbidity
;
Female
;
Humans
;
Male
;
Middle Aged
;
Retrospective Studies
;
Severity of Illness Index
;
Treatment Outcome
3. A modified technique for tibial bone sparing in unicompartmental knee arthroplasty
Qi-Dong ZHANG ; Zhao-Hui LIU ; Wei-Guo WANG ; Qian ZHANG ; Li-Ming CHENG ; Wan-Shou GUO
Chinese Medical Journal 2019;132(22):2690-2697
Background:
Previously, the authors modified the surgical technique to preserve tibial bone mass for Oxford unicompartmental knee arthroplasty (UKA). The purpose of this study was to determine the clinical outcomes and values of this modified technique.
Methods:
Clinical data of 34 consecutive patients who underwent the unilateral modified UKA technique (modified group, 34 knees) were retrospectively analyzed. To compare the outcome, a match-paired control group (conventional group, 34 knees) of an equal number of patients using the conventional technique system in the same period were selected and matched with respect to diagnosis, age, pre-operative range of motion (ROM), and radiological grade of knee arthrosis. Clinical outcomes including knee Hospital for Special Surgery (HSS) score, ROM, and complications were compared between the two groups. Post-operative radiographic assessments included hip-knee-ankle angle (HKA), joint line change, implant position, and alignment.
Results:
The mean follow-up time was 38.2 ± 6.3 months. There was no difference in baseline between the two groups. The amount of proximal tibial bone cut in the modified group was significantly less than that of the conventional group (4.7 ± 1.1 mm
4.Glycosaminoglycan Content of the Lateral Compartment Cartilage in Knees Conforming to the Indications for Oxford Medial Unicompartmental Knee Arthroplasty.
Fu-Yin WAN ; Ju-An YUE ; Wan-Shou GUO ; Lu-Yao MA ; Ran YAN ; Qi-Dong ZHANG ; Li-Ming CHENG
Chinese Medical Journal 2018;131(2):194-199
BACKGROUNDThe quality of the lateral compartment cartilage is important to preoperative evaluation and prognostic prediction of unicompartmental knee arthroplasty (UKA). Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) enables noninvasive assessment of glycosaminoglycan (GAG) content in cartilage. This study aimed to determine the GAG content of the lateral compartment cartilage in knees scheduled to undergo Oxford medial UKA.
METHODSFrom December 2016 to May 2017, twenty patients (20 osteoarthritic knees) conforming to the indications for Oxford medial UKA were included as the osteoarthritis (OA) group, and 20 healthy volunteers (20 knees) paired by sex, knee side, age (±3 years), and body mass index (BMI) (±3 kg/m2) were included as the control group. The GAG contents of the weight-bearing femoral cartilage (wbFC), the posterior non-weight-bearing femoral cartilage (pFC), the lateral femoral cartilage (FC), and tibial cartilage (TC) were detected using dGEMRIC. The dGEMRIC indices (T1Gd) were calculated in the middle three consecutive slices of the lateral compartment. Paired t-tests were used to compare the T1Gd in each region of interest between the OA group and control group.
RESULTSThe average age and BMI in the two groups were similar. In the OA group, T1Gd of FC and TC was 386.7 ± 50.7 ms and 429.6 ± 59.9 ms, respectively. In the control group, T1Gd of FC and TC was 397.5 ± 52.3 ms and 448.6 ± 62.5 ms, respectively. The respective T1Gd of wbFC and pFC was 380.0 ± 47.8 ms and 391.0 ± 66.3 ms in the OA group and 400.3 ± 51.5 ms and 393.6 ± 57.9 ms in the control group. Although the T1Gd of wbFC and TC tended to be lower in the OA group than the control group, there was no significant difference between groups in the T1Gd in any of the analyzed cartilage regions (P value of wbFC, pFC, FC, and TC was 0.236, 0.857, 0.465, and 0.324, respectively).
CONCLUSIONSThe GAG content of the lateral compartment cartilage in knees conforming to indications for Oxford medial UKA is similar with those of age- and BMI-matched participants without OA.
5.An innovative three-dimensional method for identifying a proper femoral intramedullary entry point in total knee arthroplasty.
Lu-Yao MA ; Hong-Yu WEI ; Fu-Yin WAN ; Wan-Shou GUO ; Jin-Hui MA
Chinese Medical Journal 2018;131(21):2531-2536
Background:Identification of the proper femoral intramedullary (IM) access point is an important determinant of final implant position in IM-guided total knee arthroplasty (TKA). The aim of this study was to identify the optimal entry point in Chinese participants using a new three-dimensional method.
Methods:A series of computed tomography scans of 44 femurs in Chinese participants from October 2014 to October 2015 were imported into Mimics 17.0 software to identify the optimal entry point. The apex of the intercondylar notch (AIN) was used as the reference bony anatomical landmark to identify the proper entry point to insert the IM rod. The statistical significance was calculated on the basis of a 5% level (P < 0.05) using the Student's t-test.
Results:For the males, the average ideal entry point was 1.49 mm medial and 13.39 mm anterior to the AIN. The values were 1.77 mm medial and 15.29 mm anterior to the AIN in females. A significant difference was present between males and females (13.39 ± 2.46 mm vs. 15.29 ± 3.44 mm, t = 2.124, P = 0.040). When using the recommended location as the entry point for the IM rod, the mean potential error differed significantly from the femoral trochlear groove (the potential error of IM in males in coronal plane: 0.93° ± 0.24° vs. 1.27° ± 0.32°, t = -4.166, P <0.001; the potential error of IM in males in sagittal plane: 1.40° ± 0.42° vs. 2.79° ± 0.70°, t = 7.155, P < 0.001; the potential error of IM in females in coronal plane: 0.73° ± 0.28° vs. 1.15° ± 0.35°, t = 3.940, P < 0.001; and the potential error of IM in females in sagittal plane: 1.48° ± 0.47° vs. 2.76° ± 0.83°, t =5.574, P < 0.001). A significant difference was present between the recommended point and the point 10 mm anterior to the origin of the posterior cruciate ligament (the potential error of IM in males in coronal plane: 0.93° ± 0.24° vs. 1.53° ± 0.43°, t = 5.948, P < 0.001; the potential error of IM in males in sagittal plane: 1.40° ± 0.42° vs. 2.15° ± 0.75°, t = 3.152, P = 0.003; the potential error of IM in females in coronal plane: 0.73° ± 0.28° vs. 1.28° ± 0.42°, t = -4.632, P < 0.001; and the potential error of IM in females in sagittal plane: 1.48° ± 0.47° vs. 2.40° ± 0.93°, t = 3.763, P = 0.001).
ConclusionsThe technique described here is an innovative method for swift, easy, and accurate access to the medullary canal during TKA, and it can optimize the position and orientation of the prosthetic components in knee arthroplasty.
6.Application of lower edge of teardrop on restoring anatomical hip center height in total hip arthroplasty
Yu-Feng LU ; Wan-Shou GUO ; Wei SUN ; Lin LIU ; Peng XU
Chinese Journal of Tissue Engineering Research 2018;22(11):1641-1646
BACKGROUND: The position of acetabular prosthesis is very important in total hip arthroplasty; its ideal position is to restore its anatomical hip center of rotation. As the inferior edge of the teardrop is an important stable imaging marker, it is of great significance to evaluate the position of acetabular cup and guide the correct intraoperative placement of prosthesis. OBJECTIVE: To investigate the effect of the lower edge of the teardrop on restoring anatomical hip center height in total hip arthroplasty. METHODS: Medical records and anteroposterior images of 107 unilateral total hip arthroplasty with normal contralateral acetabulum and lower edge of cup at the same level as lower edge of the teardrop were reviewed. Center height and horizontal distance as well as cup inclination and anteversion were measured radiographically. The paired t test was used to compare data between left and right sides of hip center height. Scatterplots and Pearson's correlation coefficients were used to evaluate the association between the difference of the height of two hip centers, cup anteversion and inclination angle. RESULTS AND CONCLUSION: (1) The height of cup center was significantly higher than that of contralateral hip joint center (P < 0.001). Whereas 93.4% (100 cases) of absolute differences between them were in the range from 0 mm to 5 mm, only 6.6% (7 cases) were more than 5 mm. (2) However, when the lower edge of cup was 1.5-2.0 mm inferior to the lower edge of the teardrop, there was no statistical differences between them (P=0.345 and 0.331). (3) There was a weak correlation between the difference of the height of two hip centers with inclination and anteversion (r=0.376, 0.310, P < 0.001). (4) The position of cup with its inferior edge 1.5-2.0 mm below the inferior edge of the teardrop can exactly replicate the anatomic hip center.
7.Significance of Lateral Pillar in Osteonecrosis of Femoral Head: A Finite Element Analysis.
Peng-Fei WEN ; Wan-Shou GUO ; ; Qi-Dong ZHANG ; Fu-Qiang GAO ; Ju-An YUE ; Zhao-Hui LIU ; Li-Ming CHENG ; Zi-Rong LI
Chinese Medical Journal 2017;130(21):2569-2574
BACKGROUNDThe lateral pillar of the femoral head is an important site for disease development such as osteonecrosis of the femoral head. The femoral head consists of medial, central, and lateral pillars. This study aimed to determine the biomechanical effects of early osteonecrosis in pillars of the femoral head via a finite element (FE) analysis.
METHODSA three-dimensional FE model of the intact hip joint was constructed from the image data of a healthy control. Further, a set of six early osteonecrosis models was developed based on the three-pillar classification. The von Mises stress and surface displacements were calculated for all models.
RESULTSThe peak values of von Mises stress in the cortical and cancellous bones of normal model were 6.41 MPa and 0.49 MPa, respectively. In models with necrotic lesions in the cortical and cancellous bones, the von Mises stress and displacement of lateral pillar showed significant variability: the stress of cortical bone decreased from 6.41 MPa to 1.51 MPa (76.0% reduction), while cancellous bone showed an increase from 0.49 MPa to 1.28 MPa (159.0% increase); surface displacements of cortical and cancellous bones increased from 52.4 μm and 52.1 μm to 67.9 μm (29.5%) and 61.9 μm (18.8%), respectively. In addition, osteonecrosis affected not only pillars but also adjacent structures in terms of the von Mises stress and surface displacement levels.
CONCLUSIONSThis study suggested that the early-stage necrosis in the femoral head could increase the risk of collapse, especially in lateral pillar. On the other hand, the cortical part of lateral pillar was found to be the main biomechanical support of femoral head.
8.Effects of Lower Limb Alignment and Tibial Component Inclination on the Biomechanics of Lateral Compartment in Unicompartmental Knee Arthroplasty.
Peng-Fei WEN ; Wan-Shou GUO ; ; Fu-Qiang GAO ; Qi-Dong ZHANG ; Ju-An YUE ; Li-Ming CHENG ; Guang-Duo ZHU
Chinese Medical Journal 2017;130(21):2563-2568
BACKGROUNDLateral compartmental osteoarthritis (LCOA), a major complication after medial mobile-bearing unicompartmental knee arthroplasty (UKA), is highly associated with the increased stress of the lateral compartment. This study aimed to analyze the effects on the stress and load distribution of the lateral compartment induced by lower limb alignment and coronal inclination of the tibial component in UKA through a finite element analysis.
METHODSEight three-dimensional models were constructed based on a validated model for analyzing the biomechanical effects of implantation parameters on the lateral compartment after medial Oxford UKA: postoperative lower limb alignment of 3° valgus, neutral and 3° varus, and the inclination of tibial components placed in 4°, 2° valgus, square, and 2° and 4° varus. The contact stress of femoral and tibial cartilage and load distribution were calculated for all models.
RESULTSIn the 3° valgus lower limb alignment model, the contact stress of femoral (3.38 MPa) and tibial (3.50 MPa) cartilage as well as load percentage (45.78%) was highest compared to any other model, and was increased by 36.75%, 47.70%, and 27.63%, respectively when compared to 3° varus. In the condition of a neutral position, the outcome was comparable for the different tibial tray inclination models. The inclination did not greatly affect the lateral compartmental stress and load distribution.
CONCLUSIONSThis study suggested that slightly varus (undercorrection) lower limb alignment might be a way to prevent LCOA in medial mobile-bearing UKA. However, the inclination (4° varus to 4° valgus) of the tibial component in the coronal plane would not be a risk factor for LCOA in neutral position.
9.Effects of Lower Limb Alignment and Tibial Component Inclination on the Biomechanics of Lateral Compartment in Unicompartmental Knee Arthroplasty
Wen PENG?FEI ; Guo WAN?SHOU ; Gao FU?QIANG ; Zhang QI?DONG ; Yue JU?AN ; Cheng LI?MING ; Zhu GUANG?DUO
Chinese Medical Journal 2017;(21):2563-2568
Background: Lateral compartmental osteoarthritis (LCOA), a major complication after medial mobile?bearing unicompartmental knee arthroplasty (UKA), is highly associated with the increased stress of the lateral compartment. This study aimed to analyze the effects on the stress and load distribution of the lateral compartment induced by lower limb alignment and coronal inclination of the tibial component in UKA through a finite element analysis. Methods: Eight three?dimensional models were constructed based on a validated model for analyzing the biomechanical effects of implantation parameters on the lateral compartment after medial Oxford UKA: postoperative lower limb alignment of 3° valgus, neutral and 3° varus, and the inclination of tibial components placed in 4°, 2° valgus, square, and 2° and 4° varus. The contact stress of femoral and tibial cartilage and load distribution were calculated for all models. Results: In the 3° valgus lower limb alignment model, the contact stress of femoral (3.38 MPa) and tibial (3.50 MPa) cartilage as well as load percentage (45.78%) was highest compared to any other model, and was increased by 36.75%, 47.70%, and 27.63%, respectively when compared to 3° varus. In the condition of a neutral position, the outcome was comparable for the different tibial tray inclination models. The inclination did not greatly affect the lateral compartmental stress and load distribution. Conclusions: This study suggested that slightly varus (undercorrection) lower limb alignment might be a way to prevent LCOAin medial mobile?bearing UKA. However, the inclination (4° varus to 4° valgus) of the tibial component in the coronal plane would not be a risk factor for LCOA in neutral position.
10.Significance of Lateral Pillar in Osteonecrosis of Femoral Head: A Finite Element Analysis
Wen PENG?FEI ; Guo WAN?SHOU ; Zhang QI?DONG ; Gao FU?QIANG ; Yue JU?AN ; Liu ZHAO?HUI ; Cheng LI?MING ; Li ZI?RONG
Chinese Medical Journal 2017;(21):2569-2574
Background: The lateral pillar of the femoral head is an important site for disease development such as osteonecrosis of the femoral head. The femoral head consists of medial, central, and lateral pillars. This study aimed to determine the biomechanical effects of early osteonecrosis in pillars of the femoral head via a finite element (FE) analysis. Methods: A three?dimensional FE model of the intact hip joint was constructed from the image data of a healthy control. Further, a set of six early osteonecrosis models was developed based on the three?pillar classification. The von Mises stress and surface displacements were calculated for all models. Results: The peak values of von Mises stress in the cortical and cancellous bones of normal model were 6.41 MPa and 0.49 MPa, respectively. In models with necrotic lesions in the cortical and cancellous bones, the von Mises stress and displacement of lateral pillar showed significant variability: the stress of cortical bone decreased from 6.41 MPa to 1.51 MPa (76.0% reduction), while cancellous bone showed an increase from 0.49 MPa to 1.28 MPa (159.0% increase); surface displacements of cortical and cancellous bones increased from 52.4 μm and 52.1 μm to 67.9 μm (29.5%) and 61.9 μm (18.8%), respectively. In addition, osteonecrosis affected not only pillars but also adjacent structures in terms of the von Mises stress and surface displacement levels. Conclusions: This study suggested that the early?stage necrosis in the femoral head could increase the risk of collapse, especially in lateral pillar. On the other hand, the cortical part of lateral pillar was found to be the main biomechanical support of femoral head.

Result Analysis
Print
Save
E-mail