1.Mechanism of Huangqi Guizhi Wuwutang in Treatment of Sarcopenia Associated with Rheumatoid Arthritis by Improving Skeletal Muscle Homeostasis Through Regulation of Autophagy
Yakun WAN ; Yuan LIU ; Yuan QU ; Jingyu GUO ; Ting LIU ; Zhihui BAI ; Di ZHANG ; Ping JIANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):12-23
		                        		
		                        			
		                        			ObjectiveThis study aims to explore the mechanism of action of Huangqi Guizhi Wuwutang in treating rheumatoid arthritis (RA)-associated sarcopenia by regulating autophagy and improving skeletal muscle homeostasis based on network pharmacology,bioinformatics,machine learning,and animal experiments. MethodsActive ingredients and targets of Huangqi Guizhi Wuwutang were screened using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP),PubChem,and SwissTargetPrediction databases. RA-related datasets were retrieved from the GEO database,and differential genes were screened. Sarcopenia-related targets were searched through GeneCards and the Comparative Toxicology Database (CTD),and autophagy-related gene sets were downloaded from the Human Autophagy Database (HADb). Their intersection was analyzed to identify autophagy-related therapeutic targets,followed by enrichment analysis. A protein-protein interaction (PPI) network was constructed using the STRING database,and key targets were selected using multiple methods. Machine learning was applied to predict models based on the expression profiles of intersecting targets,and nomogram models were constructed based on key targets. Molecular docking of the top four active ingredients with key targets was performed using AutoDockVina. A collagen-induced arthritis (CIA) rat model was established using bovine type Ⅱ collagen,with SD rats divided into groups including a blank group,a model group,and low-,medium-,and high-dose groups of Huangqi Guizhi Wuwutang (2.44,4.88,and 9.76 g·kg-1) and administered for five consecutive weeks. Joint scores and gastrocnemius muscle mass were recorded and analyzed after modeling. Hematoxylin and eosin (HE) staining and Masson's staining were used to observe pathological changes in muscle tissue. Immunofluorescence staining was applied to observe the protein expression levels of myosin heavy chain (MYHC) and insulin-like growth factor-1 (IGF-1) in skeletal muscle. Western blot was used to detect the protein expression levels of autophagy-related proteins ATG5,Beclin1,LC3B,muscle-specific proteins (MuRF1),MaFbx,and MYHC. Real-time quantitative reverse transcription PCR (Real-time PCR) was performed to measure the mRNA expression levels of ATG5,Beclin1,LC3B,MuRF1,MaFbx,and MYHC in muscle tissue. ResultsNetwork pharmacology revealed that Huangqi Guizhi Wuwutang shared 25 common targets with autophagy genes related to RA-associated sarcopenia. The PPI network and machine learning identified six key targets,which were primarily involved in autophagy and inflammatory pathways. Animal experiments showed that compared to the blank group,the model group had significantly higher joint scores (P<0.01) and lower gastrocnemius muscle index (P<0.01). HE staining indicated a significant reduction in the cross-sectional area of gastrocnemius muscle fibers,with notable inflammatory cell infiltration and muscle atrophy in the model group. Masson's staining revealed obvious collagen fiber proliferation and deposition,with significant muscle fibrosis in the model group. The protein and mRNA expression levels of ATG5,Beclin1,LC3B,MuRF1,and MaFbx were significantly increased (P<0.01),while the protein expression of MYHC and IGF1 was significantly downregulated (P<0.01). Compared with the model group,the high-dose group of Huangqi Guizhi Wuwutang showed significantly reduced protein and mRNA expression levels of ATG5,Beclin1,LC3B,MuRF1,and MaFbx (P<0.01) and increased protein expression levels of MYHC and IGF1 (P<0.01). The cross-sectional area of muscle fibers increased,and the muscle cell morphology approached normal. Moreover,pathological abnormalities in the gastrocnemius muscle were significantly improved,with reduced collagen fiber proliferation (P<0.01). ConclusionHuangqi Guizhi Wuwutang can mediate autophagy by regulating the expression of ATG5,Beclin1,LC3B,and IGF1,thereby reducing skeletal muscle catabolism and improving skeletal muscle homeostasis,which contributes to the treatment of RA-associated sarcopenia. The findings provide insight into the mechanisms underlying the effects of Huangqi Guizhi Wuwutang in the treatment of RA-related sarcopenia and offer a reference for its enhanced clinical application. 
		                        		
		                        		
		                        		
		                        	
2.Application of CRISPR/Cas System in Precision Medicine for Triple-negative Breast Cancer
Hui-Ling LIN ; Yu-Xin OUYANG ; Wan-Ying TANG ; Mi HU ; Mao PENG ; Ping-Ping HE ; Xin-Ping OUYANG
Progress in Biochemistry and Biophysics 2025;52(2):279-289
		                        		
		                        			
		                        			Triple-negative breast cancer (TNBC) represents a distinctive subtype, characterized by the absence of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (HER2). Due to its high inter-tumor and intra-tumor heterogeneity, TNBC poses significant chanllenges for personalized diagnosis and treatment. The advant of clustered regular interspaced short palindromic repeats (CRISPR) technology has profoundly enhanced our understanding of the structure and function of the TNBC genome, providing a powerful tool for investigating the occurrence and development of diseases. This review focuses on the application of CRISPR/Cas technology in the personalized diagnosis and treatment of TNBC. We begin by discussing the unique attributes of TNBC and the limitations of current diagnostic and treatment approaches: conventional diagnostic methods provide limited insights into TNBC, while traditional chemotherapy drugs are often associated with low efficacy and severe side effects. The CRISPR/Cas system, which activates Cas enzymes through complementary guide RNAs (gRNAs) to selectively degrade specific nucleic acids, has emerged as a robust tool for TNBC research. This technology enables precise gene editing, allowing for a deeper understanding of TNBC heterogeneity by marking and tracking diverse cell clones. Additionally, CRISPR facilitates high-throughput screening to promptly identify genes involved in TNBC growth, metastasis, and drug resistance, thus revealing new therapeutic targets and strategies. In TNBC diagnostics, CRISPR/Cas was applied to develop molecular diagnostic systems based on Cas9, Cas12, and Cas13, each employing distinct detection principles. These systems can sensitively and specifically detect a variety of TNBC biomarkers, including cell-specific DNA/RNA and circulating tumor DNA (ctDNA). In the realm of precision therapy, CRISPR/Cas has been utilized to identify key genes implicated in TNBC progression and treatment resistance. CRISPR-based screening has uncovered potential therapeutic targets, while its gene-editing capabilities have facilitated the development of combination therapies with traditional chemotherapy drugs, enhancing their efficacy. Despite its promise, the clinical translation of CRISPR/Cas technology remains in its early stages. Several clinical trials are underway to assess its safety and efficacy in the treatment of various genetic diseases and cancers. Challenges such as off-target effects, editing efficiency, and delivery methods remain to be addressed. The integration of CRISPR/Cas with other technologies, such as 3D cell culture systems, human induced pluripotent stem cells (hiPSCs), and artificial intelligence (AI), is expected to further advance precision medicine for TNBC. These technological convergences can offer deeper insights into disease mechanisms and facilitate the development of personalized treatment strategies. In conclusion, the CRISPR/Cas system holds immense potential in the precise diagnosis and treatment of TNBC. As the technology progresses and becomes more costs-effective, its clinical relevance will grow, and the translation of CRISPR/Cas system data into clinical applications will pave the way for optimal diagnosis and treatment strategies for TNBC patients. However, technical hurdles and ethical considerations require ongoing research and regulation to ensure safety and efficacy. 
		                        		
		                        		
		                        		
		                        	
3.Association between the ratio of dietary vitamin A to body weight and hypertension in children
Chinese Journal of School Health 2024;45(2):267-272
		                        		
		                        			Objective:
		                        			To explore the relationship between the ratio of dietary vitamin A (VitA) to body weight and hypertension among children, so as to provide a reference for blood pressure control through dietary nutritional interventions and childhood hypertension prevention.
		                        		
		                        			Methods:
		                        			Utilizing the baseline survey and followup sample data from the Healthy Children Cohort established in urban and rural areas of Chongqing from 2014 to 2019, structured quantitative dietary questionnaire and selfdesigned questionnaire were used to investigate the information of dietary intake and socioeconomic characteristics of 15 279 children, as well as blood pressure, height, weight measurement. The ratio of dietary VitA to body weight was divided into four groups based on quartiles [≤P25(Q1), >P25~P50(Q2), >P50~P75(Q3), >P75(Q4)]. Generalized linear regression models and Logistic regression models were used to analyze the correlation between ratio of dietary VitA to body weight with blood pressure levels and prevalence of hypertension.
		                        		
		                        			Results:
		                        			The results of the 2014 baseline survey indicated that, after adjusting for confounding factors such as demographic indicators and nutritional intake, significant differences were observed in systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) among different groups categorized by the ratio of dietary VitA to body weight (F=157.57, 44.71, 95.92, P<0.01). The baseline ratio of dietary VitA to body weight in children exhibited a negative correlation with DBP, SBP and MAP at baseline and in 2019[baseline: β(95%CI)=-0.65(-0.89--0.42), -0.22(-0.42--0.01), -0.36(-0.56--0.16); 2019: β(95%CI)=-0.77(-1.34--0.19), -0.62(-1.21--0.02), -0.77(-1.34--0.19), P<0.05]. Compared to Q1 group, the risk of hypertension decreased among children in Q4 at baseline and followup in 2019 [OR(95%CI)=0.63(0.49-0.81), 0.18(0.08-0.42), P<0.01].
		                        		
		                        			Conclusions
		                        			The ratio of dietary VitA to body weight is significantly negatively correlated with blood pressure levels among children, and dietary VitA deficiency is an independent risk factor for hypertension among children. Measures should be taken to actively adjust childrens dietary nutrition and reduce the risk of childhood hypertension.
		                        		
		                        		
		                        		
		                        	
4. Analysis of effective components of Agaricus blazei Murill extract by LC-MS and network pharmacology analysis in treatment of chronic myeloid leukemia
Dong-Ping WANG ; Yan-Qing SUN ; Wan-Wen GE ; Jing SHAO ; Dong-Ping WANG ; Yan-Qing SUN
Chinese Pharmacological Bulletin 2024;40(1):139-145
		                        		
		                        			
		                        			 Aim To explore the potential targets and related signaling pathways of Agaricus blazei Murill (AbM ) extract in the treatment of chronic myeloid leukemia (CML) based on liquid chromatography mass spectrometry ( LC-MS ), network pharmacology, molecular docking, and were further verified by experiments in vitro. Methods The active components of AbM extract were retrieved from LC-MS, Swiss Target Prediction database was used to predict related targets, and CML disease target genes were obtained from Gen- eCards and DisGeNET databases. After screening the common targets of drug and CML, the protein-protein interaction network of the common targets was performed by STRING, and GO and KEGG enrichment a- nalysis were done by DAVID database. Cytoscape software was used to construct the network of target protein. Molecular docking was carried out by DockThor, and the Pymol software was used to make a visual picture. The inhibitory effect of AbM extract on leukemia cells K562 was determined by CCK-8 experiment, and the effect of AbM extract on the expression and phosphorylation level of related proteins was verified by Western blot. Results The prediction results showed that 126 active components of AbM extract, and 172 common targets were collected. KEGG pathway analysis results showed that PI3K/Akt/mTOR signaling pathway might play an important role in the treatment of CML disease. The IC 
		                        		
		                        		
		                        		
		                        	
5. MW-9, a chalcones derivative bearing heterocyclic moieties, ameliorates ulcerative colitis via regulating MAPK signaling pathway
Zhao WU ; Nan-Ting ZOU ; Chun-Fei ZHANG ; Hao-Hong ZHANG ; Qing-Yan MO ; Ze-Wei MAO ; Chun-Ping WAN ; Ming-Qian JU ; Chun-Ping WAN ; Xing-Cai XU
Chinese Pharmacological Bulletin 2024;40(3):514-520
		                        		
		                        			
		                        			 Aim To investigate the therapeutic effect of the MW-9 on ulcerative colitis(UC)and reveal the underlying mechanism, so as to provide a scientific guidance for the MW-9 treatment of UC. Methods The model of lipopolysaccharide(LPS)-stimulated RAW264.7 macrophage cells was established. The effect of MW-9 on RAW264.7 cells viability was detected by MTT assay. The levels of nitric oxide(NO)in RAW264.7 macrophages were measured by Griess assay. Cell supernatants and serum levels of inflammatory cytokines containing IL-6, TNF-α and IL-1β were determined by ELISA kits. Dextran sulfate sodium(DSS)-induced UC model in mice was established and body weight of mice in each group was measured. The histopathological damage degree of colonic tissue was assessed by HE staining. The protein expression of p-p38, p-ERK1/2 and p-JNK was detected by Western blot. Results MW-9 intervention significantly inhibited NO release in RAW264.7 macrophages with IC50 of 20.47 mg·L-1 and decreased the overproduction of inflammatory factors IL-6, IL-1β and TNF-α(P<0.05). MW-9 had no cytotoxicity at the concentrations below 6 mg·L-1. After MW-9 treatment, mouse body weight was gradually reduced, and the serum IL-6, IL-1β and TNF-α levels were significantly down-regulated. Compared with the model group, MW-9 significantly decreased the expression of p-p38 and p-ERK1/2 protein. Conclusions MW-9 has significant anti-inflammatory activities both in vitro and in vivo, and its underlying mechanism for the treatment of UC may be associated with the inhibition of MAPK signaling pathway. 
		                        		
		                        		
		                        		
		                        	
6.Application of trauma-focused cognitive behavioral therapy among children and adolescents with childhood household dysfunction
Xinyi HOU ; Jingjing WAN ; Lianhua PENG ; Jiangming SHENG ; Nannan LONG ; Ping MAO
Journal of Central South University(Medical Sciences) 2024;49(1):145-152
		                        		
		                        			
		                        			Childhood household dysfunction(CHD)is a common adverse childhood experience,which brings the heavy physical and mental afflictions to children and adolescents.Trauma-focused cognitive behavioral therapy(TF-CBT)is an evidence-based psychotherapy that helps children and adolescents who have experienced childhood trauma with traumatic memories.It aims to enhance the coping abilities of CHD children and adolescents,thereby improving the negative effects caused by trauma and effectively reducing psychological burden.TF-CBT can effectively improve post-traumatic stress disorder,emotional and behavioral problems,and family function in children and adolescents with CHD.It is recommended to conduct high-quality original research in the future,develop targeted TF-CBT intervention plans based on potential predictive factors,adopt a combination of online and offline methods,and construct TF-CBT interventions suitable for the Chinese CHD population to meet the mental health service needs of CHD children and adolescents.
		                        		
		                        		
		                        		
		                        	
7.Preparation of soluble microneedles of Aconitum brachypodum alkaloids
Yao CHEN ; Bi-Li DENG ; Jing WAN ; Na-Na DONG ; Xiao-Lan CHEN ; Yong-Ping ZHANG
Chinese Traditional Patent Medicine 2024;46(3):740-747
		                        		
		                        			
		                        			AIM To prepare the soluble microneedles of Aconitum brachypodum Diels alkaloids.METHODS Centrifugal molding method was adopted in the preparation of soluble microneedles.With chondroitin sulfate consumption,PVP K120 consumption and 40%ethanol consumption as influencing factors,piercing rate as an evaluation index,the formulation was optimized by Box-Behnken response surface method,after which the morphology,piercing performance,drug content and in vitro transdermal performance were investigated.RESULTS The optimal formulation was determined to be 123 mg for chondroitin sulfate consumption,298 mg for PVP K120 consumption,and 2.4 mL for 40%ethanol consumption,the piercing rate was 98.3%.The soluble microneedles were yellow and square patch with conoid needle,which could pierce aluminum foil and rat skin,along with the drug content of(0.94±0.025)mg.The soluble microneedle group demonstrated the accumulative permeability rate of 91.4%within 24 h,which was higher than that in the gel ointment group,and the permeability accorded with Higuchi equation.CONCLUSION The soluble microneedles of A.brachypodum alkaloids exhibit good mechanical strength,which can achieve effective transdermal delivery of drugs.
		                        		
		                        		
		                        		
		                        	
8.Construction and validation of a visual prediction model for the risk of urinary tract infection after PKRP surgery
Fan YE ; Yuying WAN ; Ping TU ; Chuntao XU
China Modern Doctor 2024;62(12):19-23
		                        		
		                        			
		                        			Objective To analyze the influencing factors of postoperative urinary tract infection in patients undergoing transurethral resection of the prostate with plasmakinetic energy(PKRP)and establish a risk prediction nomogram model.Methods The data of PKRP patients in Department of Urology,the Second Affiliated Hospital of Nanchang University from December 2020 to September 2021 were selected as the modeling set,and the high-risk factors were screened by univariate analysis and Logistic regression analysis.The risk prediction nomogram model was constructed and verified internally and externally.Results The incidence of urinary tract infection after PKRP surgery was 15.38%.Multivariate analysis showed that age,other location infection,diabetes,preoperative catheterization,urethral injury,indwelling catheter material,hair coloring catheter replacement times and number of indwelling catheterization were risk factors for urinary tract infection(P<0.05).Internal verification(area under the curve was 0.875)and external verification(area under the curve was 0.869)show that the risk prediction nomogram model has good discrimination and accuracy.Conclusion The influencing factors of urinary tract infection after PKRP are complex.The risk prediction nomogram model has good prediction performance,which can provide a basis for the prevention and treatment of urinary tract infection after PKRP.
		                        		
		                        		
		                        		
		                        	
9.Synergistic aspirin derivatives treat hypoxic injury of coronary heart diseases
Wen ZHOU ; Ping JIANG ; Wan-xiang YANG ; Shao-hua GOU
Acta Pharmaceutica Sinica 2024;59(10):2800-2808
		                        		
		                        			
		                        			 This study focuses on the microenvironment acidification caused by metabolic abnormalities and ion balance disturbances during cardiac ischemia, which can significantly trigger drug resistance and thus limit the therapeutic effect of coronary heart disease. To address this issue, we delve into the potential role of carbonic anhydrase inhibitors in enhancing drug efficacy through pH regulation. First, we evaluated the potential of the carbonic anhydrase inhibitor acetazolamide, in combination with aspirin, in alleviating myocardial hypoxic injury in a cellular model. Through high-throughput screening techniques, we systematically analyzed the synergistic effect of this drug combination and determined the optimal ratio. Next, we modified the structure of aspirin using acetazolamide as the structural basis, aiming to create novel derivatives with stronger myocardial protective activity. Using 
		                        		
		                        	
10.The taste correction process of ibuprofen oral solution based on the combination of electronic tongue technology and artificial taste comprehensive evaluation
Rui YUAN ; Yun-ping QU ; Yan WANG ; Ya-xuan ZHANG ; Wan-ling ZHONG ; Xiao-yu FAN ; Hui-juan SHEN ; Yun-nan MA ; Jin-hong YE ; Jie BAI ; Shou-ying DU
Acta Pharmaceutica Sinica 2024;59(8):2404-2411
		                        		
		                        			
		                        			 This experiment aims to study the taste-masking effects of different kinds of corrigent used individually and in combination on ibuprofen oral solution, in order to optimize the taste-masking formulation. Firstly, a wide range of corrigent and the mass fractions were extensively screened using electronic tongue technology. Subsequently, a combination of sensory evaluation, analytic hierarchy process (AHP)-fuzzy mathematics evaluation, and Box-Behnken experimental design were employed to comprehensively assess the taste-masking effects of different combinations of corrigent on ibuprofen oral solution, optimize the taste-masking formulation, and validate the results. The study received ethical approval from the Review Committee of the Beijing University of Chinese Medicine (ethical code: 2024BZYLL0102). The results showed that corrigent fractions and types were screened separately through single-factor experiments. Subsequently, a Box-Behnken response surface design combined with AHP and fuzzy mathematics evaluation was used to fit a functional model: 
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail