1.Analysis of muscle synergy and muscle functional network at different walking speeds based on surface electromyographic signal.
Caihong CUI ; Huacong MIAO ; Tie LIANG ; Xiuling LIU ; Xiaoguang LIU
Journal of Biomedical Engineering 2023;40(5):938-944
An in-depth understanding of the mechanism of lower extremity muscle coordination during walking is the key to improving the efficacy of gait rehabilitation in patients with neuromuscular dysfunction. This paper investigates the effect of changes in walking speed on lower extremity muscle synergy patterns and muscle functional networks. Eight healthy subjects were recruited to perform walking tasks on a treadmill at three different speeds, and the surface electromyographic signals (sEMG) of eight muscles of the right lower limb were collected synchronously. The non-negative matrix factorization (NNMF) method was used to extract muscle synergy patterns, the mutual information (MI) method was used to construct the alpha frequency band (8-13 Hz), beta frequency band (14-30 Hz) and gamma frequency band (31-60 Hz) muscle functional network, and complex network analysis methods were introduced to quantify the differences between different networks. Muscle synergy analysis extracted 5 muscle synergy patterns, and changes in walking speed did not change the number of muscle synergy, but resulted in changes in muscle weights. Muscle network analysis found that at the same speed, high-frequency bands have lower global efficiency and clustering coefficients. As walking speed increased, the strength of connections between local muscles also increased. The results show that there are different muscle synergy patterns and muscle function networks in different walking speeds. This study provides a new perspective for exploring the mechanism of muscle coordination at different walking speeds, and is expected to provide theoretical support for the evaluation of gait function in patients with neuromuscular dysfunction.
Humans
;
Walking Speed
;
Muscle, Skeletal/physiology*
;
Electromyography
;
Gait/physiology*
;
Walking/physiology*
2.Multi-modal synergistic quantitative analysis and rehabilitation assessment of lower limbs for exoskeleton.
Xu ZHONG ; Bi ZHANG ; Jiwei LI ; Liang ZHANG ; Xiangnan YUAN ; Peng ZHANG ; Xingang ZHAO
Journal of Biomedical Engineering 2023;40(5):953-964
In response to the problem that the traditional lower limb rehabilitation scale assessment method is time-consuming and difficult to use in exoskeleton rehabilitation training, this paper proposes a quantitative assessment method for lower limb walking ability based on lower limb exoskeleton robot training with multimodal synergistic information fusion. The method significantly improves the efficiency and reliability of the rehabilitation assessment process by introducing quantitative synergistic indicators fusing electrophysiological and kinematic level information. First, electromyographic and kinematic data of the lower extremity were collected from subjects trained to walk wearing an exoskeleton. Then, based on muscle synergy theory, a synergistic quantification algorithm was used to construct synergistic index features of electromyography and kinematics. Finally, the electrophysiological and kinematic level information was fused to build a modal feature fusion model and output the lower limb motor function score. The experimental results showed that the correlation coefficients of the constructed synergistic features of electromyography and kinematics with the clinical scale were 0.799 and 0.825, respectively. The results of the fused synergistic features in the K-nearest neighbor (KNN) model yielded higher correlation coefficients ( r = 0.921, P < 0.01). This method can modify the rehabilitation training mode of the exoskeleton robot according to the assessment results, which provides a basis for the synchronized assessment-training mode of "human in the loop" and provides a potential method for remote rehabilitation training and assessment of the lower extremity.
Humans
;
Exoskeleton Device
;
Reproducibility of Results
;
Walking/physiology*
;
Lower Extremity
;
Algorithms
;
Stroke Rehabilitation/methods*
3.A wearable six-minute walk-based system to predict postoperative pulmonary complications after cardiac valve surgery: an exploratory study.
Yuqiang WANG ; Jiachen WANG ; Jian ZHANG ; Zeruxin LUO ; Yingqiang GUO ; Zhengbo ZHANG ; Pengming YU
Journal of Biomedical Engineering 2023;40(6):1117-1125
In recent years, wearable devices have seen a booming development, and the integration of wearable devices with clinical settings is an important direction in the development of wearable devices. The purpose of this study is to establish a prediction model for postoperative pulmonary complications (PPCs) by continuously monitoring respiratory physiological parameters of cardiac valve surgery patients during the preoperative 6-Minute Walk Test (6MWT) with a wearable device. By enrolling 53 patients with cardiac valve diseases in the Department of Cardiovascular Surgery, West China Hospital, Sichuan University, the grouping was based on the presence or absence of PPCs in the postoperative period. The 6MWT continuous respiratory physiological parameters collected by the SensEcho wearable device were analyzed, and the group differences in respiratory parameters and oxygen saturation parameters were calculated, and a prediction model was constructed. The results showed that continuous monitoring of respiratory physiological parameters in 6MWT using a wearable device had a better predictive trend for PPCs in cardiac valve surgery patients, providing a novel reference model for integrating wearable devices with the clinic.
Humans
;
Lung
;
Walking/physiology*
;
Walk Test
;
Heart Valves/surgery*
;
Postoperative Period
;
Postoperative Complications/etiology*
4.Effect of torso training on unstable surface on lower limb motor function in patients with incomplete spinal cord injury.
Yiwen LOU ; Lin LI ; Qian CHEN
Journal of Zhejiang University. Medical sciences 2023;52(2):214-222
OBJECTIVES:
To investigate the effect of torso training on unstable surface on lower limb motor function in patients with incomplete spinal cord injury.
METHODS:
A total of 80 patients with incomplete spinal cord injury caused by thoracolumbar fracture admitted in Ningbo Yinzhou No.2 Hospital from April 2020 to December 2021 were randomly divided into control group and study group, with 40 cases in each group. In addition to routine training, the control group received torso training on stable surface and the study group received torso training on unstable surface. The gait, lower limb muscle strength, balance function, lower limb function, mobility and nerve function of the two groups were compared.
RESULTS:
After treatment, the stride length, stride frequency and comfortable walking speed improved in the two groups (all P<0.05), and the improvements in study group were more significant (all P<0.05). The muscle strength of quadriceps femoris, gluteus maximus, hamstring, anterior tibialis and gastrocnemius were improved in the two groups (all P<0.05), and the improvements in study group were more significant (all P<0.05); the total trajectories of static eye opening and static eye closing gravity center movement in the two groups were significantly shorter (all P<0.05), and the improvements in the study group were more significant (all P<0.05). The dynamic stability limit range and the American Spinal Injury Association (ASIA) lower extremity motor score, Berg balance scale, modified Barthel index scale in the two groups were significantly higher (all P<0.05), and these scores in study group were significantly higher than those in the control group (all P<0.05). Both groups showed a significant improvement in ASIA grade (all P<0.05), and the improvement in the study group was significantly better (P<0.05).
CONCLUSIONS
Torso training on unstable surface can effectively improve the gait and lower limb muscle strength of patients with incomplete spinal cord injury and improve the lower limb motor function.
Humans
;
Walking/physiology*
;
Spinal Cord Injuries
;
Gait/physiology*
;
Lower Extremity
;
Torso
5.Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns.
Wei WANG ; Jianquan DING ; Yi WANG ; Yicheng LIU ; Juanjuan ZHANG ; Jingtai LIU
Journal of Biomedical Engineering 2022;39(1):75-83
Lower limb ankle exoskeletons have been used to improve walking efficiency and assist the elderly and patients with motor dysfunction in daily activities or rehabilitation training, while the assistance patterns may influence the wearer's lower limb muscle activities and coordination patterns. In this paper, we aim to evaluate the effects of different ankle exoskeleton assistance patterns on wearer's lower limb muscle activities and coordination patterns. A tethered ankle exoskeleton with nine assistance patterns that combined with differenet actuation timing values and torque magnitude levels was used to assist human walking. Lower limb muscle surface electromyography signals were collected from 7 participants walking on a treadmill at a speed of 1.25 m/s. Results showed that the soleus muscle activities were significantly reduced during assisted walking. In one assistance pattern with peak time in 49% of stride and peak torque at 0.7 N·m/kg, the soleus muscle activity was decreased by (38.5 ± 10.8)%. Compared with actuation timing, the assistance torque magnitude had a more significant influence on soleus muscle activity. In all assistance patterns, the eight lower limb muscle activities could be decomposed to five basic muscle synergies. The muscle synergies changed little under assistance with appropriate actuation timing and torque magnitude. Besides, co-contraction indexs of soleus and tibialis anterior, rectus femoris and semitendinosus under exoskeleton assistance were higher than normal walking. Our results are expected to help to understand how healthy wearers adjust their neuromuscular control mechanisms to adapt to different exoskeleton assistance patterns, and provide reference to select appropriate assistance to improve walking efficiency.
Aged
;
Ankle/physiology*
;
Ankle Joint/physiology*
;
Biomechanical Phenomena/physiology*
;
Electromyography
;
Exoskeleton Device
;
Gait/physiology*
;
Humans
;
Muscle Contraction
;
Muscle, Skeletal/physiology*
;
Walking/physiology*
6.Differences of body composition and physical strength among Japanese and Thai older adults living in Chiang Mai, Thailand: an inter-ethnic cross-sectional study.
Takeshi YODA ; Bumnet SAENGRUT ; Kensaku MIYAMOTO ; Rujee RATTANASATHIEN ; Tatsuya SAITO ; Yasuko ISHIMOTO ; Kanlaya CHUNJAI ; Rujirat PUDWAN ; Kawin SIRIMUENGMOON ; Hironobu KATSUYAMA
Environmental Health and Preventive Medicine 2021;26(1):97-97
BACKGROUND:
The number of adults aged over 65 years is rapidly increasing in several Southeast Asian countries. Muscle mass decreases with age, leading to sarcopenia. The primary objective of this study was to determine whether differences exist in the body composition and physical strength, according to ethnicity, among community-dwelling Japanese and Thai older adults living in Chiang Mai Province, Thailand.
METHODS:
A survey was conducted in February and March 2019. Japanese and Thai adults aged ≥ 60 years living in Chiang Mai Province were recruited through community clubs. Participants completed a self-administered questionnaire that enabled collection of data on age, sex, educational background, marital status, annual income, current medical conditions, smoking and alcohol consumption, and exercise habits. Measurements were collected on height, weight, body composition, blood pressure, hand grip, and walking speed for 6 m. Body composition was measured using a standing-posture 8-electrode multifrequency bioimpedance analysis analyzer. Hand grip of each hand was measured with the patient in the standing position using a digital grip dynamometer. Multivariable logistic regression was used to determine factors associated with skeletal muscle mass index (SMI).
RESULTS:
Of the total 119 participants, 47 were Japanese (26 men, 21 women) and 72 were Thai (16 men, 56 women). The prevalence of a low SMI was 3/26 (12%), 1/21 (5%), 6/16 (38%), and 5/56 (9%) among Japanese men, Japanese women, Thai men, and Thai women, respectively. The prevalence of low muscle strength was 2/26 (8%), 2/21 (10%), 3/16 (19%), and 13/56 (23%) among Japanese men, Japanese women, Thai men, and Thai women, respectively. There were significant differences between ethnic groups in body mass index for both sexes, percentage body fat in women, SMI in men, and average grip strength in men. Ethnic group, sex, age, and body mass index were independent predictors of SMI.
CONCLUSIONS
Ethnicity had a clinically important effect on body composition and physical strength among older Japanese and Thai adults living in a similar environment.
Aged
;
Aging/physiology*
;
Asians/ethnology*
;
Body Composition
;
Body Mass Index
;
Cross-Sectional Studies
;
Electric Impedance
;
Ethnicity
;
Female
;
Hand Strength
;
Humans
;
Independent Living
;
Male
;
Middle Aged
;
Muscle Strength
;
Thailand/ethnology*
;
Walking Speed
7.Kinematics and workspace analysis of a spherical exoskeleton parallel mechanism.
Yaohong ZHAO ; Hao XIA ; Yinyin YAO ; Ruiqin LI
Journal of Biomedical Engineering 2019;36(2):213-222
Based on the biomechanical simulation curve of OpenSim, an open source software of biomechanical model, a spherical exoskeleton parallel mechanism with two degrees of freedom for hip joint is proposed in this paper for the rehabilitation therapy of patients with impaired leg motor function or elderly people with walking dysfunction. Firstly, the parallel mechanism is modeled and the position inverse solution of the parallel mechanism is obtained using inverse kinematics analysis. The velocity analysis expression of the mechanism is derived by deriving the inverse kinematics solution. The model is imported into the mechanical system dynamics analysis software ADAMS and matrix processing analysis software MATLAB to carry out simulation experiments. The correctness of the velocity analysis is verified by comparing the velocity simulation results of the two methods. Then, three singular types of the mechanism are analyzed according to the obtained Jacobian matrix. According to the inverse solution of the mechanism, the reachable workspace of the mechanism is obtained by programming in MATLAB with given mechanism parameters and restriction conditions. Finally, the prototype platform is built. The experimental results show that the exoskeleton hip joint using this parallel mechanism can satisfy the requirement of rotation angle of human hip joint movement, but also can be good to assist patients with leg flexion-extension movement and adduction-abduction movement, and it is helpful to carry out corresponding rehabilitation training. It also has theoretical significance and application value for the research work of human hip exoskeleton parallel mechanism.
Biomechanical Phenomena
;
Exoskeleton Device
;
Hip Joint
;
physiology
;
Humans
;
Models, Theoretical
;
Movement
;
Rehabilitation
;
instrumentation
;
Rotation
;
Walking
8.Altered Local Field Potential Relationship Between the Parafascicular Thalamic Nucleus and Dorsal Striatum in Hemiparkinsonian Rats.
Haiyan ZHANG ; Jing YANG ; Xuenan WANG ; Xiaomeng YAO ; Hongyu HAN ; Yunfeng GAO ; Hongli CHANG ; Tianyu XIANG ; Shuang SUN ; Yanan WANG ; Xiusong WANG ; Min WANG
Neuroscience Bulletin 2019;35(2):315-324
The thalamostriatal pathway is implicated in Parkinson's disease (PD); however, PD-related changes in the relationship between oscillatory activity in the centromedian-parafascicular complex (CM/Pf, or the Pf in rodents) and the dorsal striatum (DS) remain unclear. Therefore, we simultaneously recorded local field potentials (LFPs) in both the Pf and DS of hemiparkinsonian and control rats during epochs of rest or treadmill walking. The dopamine-lesioned rats showed increased LFP power in the beta band (12 Hz-35 Hz) in the Pf and DS during both epochs, but decreased LFP power in the delta (0.5 Hz-3 Hz) band in the Pf during rest epochs and in the DS during both epochs, compared to control rats. In addition, exaggerated low gamma (35 Hz-70 Hz) oscillations after dopamine loss were restricted to the Pf regardless of the behavioral state. Furthermore, enhanced synchronization of LFP oscillations was found between the Pf and DS after the dopamine lesion. Significant increases occurred in the mean coherence in both theta (3 Hz-7 Hz) and beta bands, and a significant increase was also noted in the phase coherence in the beta band between the Pf and DS during rest epochs. During the treadmill walking epochs, significant increases were found in both the alpha (7 Hz-12 Hz) and beta bands for two coherence measures. Collectively, dramatic changes in the relative LFP power and coherence in the thalamostriatal pathway may underlie the dysfunction of the basal ganglia-thalamocortical network circuits in PD, contributing to some of the motor and non-motor symptoms of the disease.
Animals
;
Brain Waves
;
physiology
;
Corpus Striatum
;
physiopathology
;
Cortical Synchronization
;
physiology
;
Dopaminergic Neurons
;
physiology
;
Electrocorticography
;
Male
;
Neural Pathways
;
physiopathology
;
Oxidopamine
;
Parkinsonian Disorders
;
physiopathology
;
Rats, Wistar
;
Thalamic Nuclei
;
physiopathology
;
Walking
;
physiology
9.Management of plantar fasciitis in the outpatient setting.
Ang Tee LIM ; Choon How HOW ; Benedict TAN
Singapore medical journal 2016;57(4):168-quiz 171
Plantar fasciitis is a very common cause of inferior heel pain that can be triggered and aggravated by prolonged standing, walking, running and obesity, among other factors. Treatments are largely noninvasive and efficacious. Supportive treatments, including the plantar fascia-specific stretch, calf stretching, appropriate orthotics and night dorsiflexion splinting, can alleviate plantar fascia pain. While local injections of corticosteroids can help with pain relief, the effects are short-lived and must be weighed against the risk of fat pad atrophy and plantar fascia rupture. Ultrasonography-guided focal extracorporeal shock wave therapy is useful for patients with chronic plantar fasciitis and referrals for this treatment can be made in recalcitrant cases. Activity modification to decrease cyclical repetitive loading of the plantar fascia should be advised during the treatment phase regardless of the chosen treatment modality.
Adrenal Cortex Hormones
;
administration & dosage
;
Exercise Therapy
;
methods
;
Fasciitis, Plantar
;
physiopathology
;
therapy
;
Humans
;
Injections
;
Outpatients
;
Walking
;
physiology
10.The Effects of Urban Forest-walking Program on Health Promotion Behavior, Physical Health, Depression, and Quality of Life: A Randomized Controlled Trial of Office-workers.
Kyung Sook BANG ; In sook LEE ; Sung Jae KIM ; Min Kyung SONG ; Se Eun PARK
Journal of Korean Academy of Nursing 2016;46(1):140-148
PURPOSE: This study was performed to determine the physical and psychological effects of an urban forest-walking program for office workers. For many workers, sedentary lifestyles can lead to low levels of physical activity causing various health problems despite an increased interest in health promotion. METHODS: Fifty four office workers participated in this study. They were assigned to two groups (experimental group and control group) in random order and the experimental group performed 5 weeks of walking exercise based on Information-Motivation-Behavioral skills Model. The data were collected from October to November 2014. SPSS 21.0 was used for the statistical analysis. RESULTS: The results showed that the urban forest walking program had positive effects on the physical activity level (U=65.00, p <.001), health promotion behavior (t= - 2.20, p =.033), and quality of life (t= - 2.42, p =.020). However, there were no statistical differences in depression, waist size, body mass index, blood pressure, or bone density between the groups. CONCLUSION: The current findings of the study suggest the forest-walking program may have positive effects on improving physical activity, health promotion behavior, and quality of life. The program can be used as an effective and efficient strategy for physical and psychological health promotion for office workers.
Adult
;
Blood Pressure/physiology
;
Body Mass Index
;
Body Size
;
Bone Density/physiology
;
Cities
;
Depression/*pathology
;
Female
;
Forests
;
*Health Promotion
;
Humans
;
Male
;
Middle Aged
;
Motor Activity
;
*Quality of Life
;
Sedentary Lifestyle
;
Waist Circumference
;
*Walking

Result Analysis
Print
Save
E-mail