1.Enhancement of Virus Replication in An Influenza A Virus NS1-Expresssing 293 Cell Line.
Wu Yang ZHU ; Xiao Yan TAO ; Xin Jun LYU ; Peng Cheng YU ; Zhuo Zhuang LU ;
Biomedical and Environmental Sciences 2016;29(3):224-228
The nonstructural protein 1 (NS1) of influenza A virus, which is absent from the viral particle, but highly expressed in infected cells, strongly antagonizes the interferon (IFN)-mediated antiviral response. We engineered an NS1-expressing 293 (293-NS1) cell line with no response to IFN stimulation. Compared with the parental 293 cells, the IFN-nonresponsive 293-NS1 cells improved the growth capacity of various viruses, but the introduction of NS1 barely enhanced the propagation of Tahyna virus, a negative-strand RNA virus. In particular, fastidious enteric adenovirus that replicates poorly in 293 cells may grow more efficiently in 293-NS1 cells; thus, IFN-nonresponsive 293-NS1 cells might be of great value in diagnostic laboratories for the cultivation and isolation of human enteric adenoviruses.
Cell Line
;
Gene Expression Regulation
;
HEK293 Cells
;
Humans
;
Influenza A virus
;
physiology
;
Viral Nonstructural Proteins
;
genetics
;
metabolism
;
Virus Cultivation
;
methods
;
Virus Replication
;
physiology
2.H1-A, a compound isolated from Fusarium oxysporum inhibits hepatitis C virus (HCV) NS3 serine protease.
Li-Yuan YANG ; Jun LIN ; Bin ZHOU ; Yan-Gang LIU ; Bao-Quan ZHU
Chinese Journal of Natural Medicines (English Ed.) 2016;14(4):299-302
The present study was aimed to isolate the active compounds from the fermentation products of Fusarium oxysporum, which had hepatitis C virus (HCV) NS3 protease inhibitory activity. A bioactive compound was isolated by reverse-phase silica-gel column chromatography, silica-gel column chromatography, semi-preparative reverse-phase High Performance Liquid Chromatography (HPLC), and then its molecular structure was elucidated based on the spectrosopic analysis. As a result, the compound (H1-A, 1) Ergosta-5, 8 (14), 22-trien-7-one, 3-hydroxy-,(3β, 22E) was isolated and identified. To the best of our knowledge, this was the first report on the isolation of H1-A from microorganisms with the inhibitory activity of NS3 protease.
Enzyme Inhibitors
;
chemistry
;
isolation & purification
;
metabolism
;
Fusarium
;
chemistry
;
metabolism
;
Hepacivirus
;
drug effects
;
enzymology
;
genetics
;
Hepatitis C
;
virology
;
Humans
;
Magnetic Resonance Spectroscopy
;
Viral Nonstructural Proteins
;
antagonists & inhibitors
;
metabolism
3.New Therapeutic Agent for Chronic Hepatitis C: Direct Acting Agent.
The Korean Journal of Gastroenterology 2015;66(1):5-9
Peg-interferon and ribavirin has been the standard therapy of chronic hepatitis C for the past 15 years in Korea. However, the treatment paradigm is changing. Direct acting agents (DAAs) are oral pills that can be easily taken. In addition, DAAs are more effective and have less adverse reactions compared to the previously used drugs. Chronic hepatitis C is hard to treat because the virus is error-prone virus. Host immunity is helpless against the hepatitis C virus since it evades the host immunity through various complex mechanisms. There are 6 genotypes. Quasispecies can co-exist even in the same patients. The treatment strategy is based on the combination of the individual drug corresponding to each step of viral replication process. NS5B nucleosides are the most powerful and effective drug available until now. Other drugs with different mechanisms of action can be used to provide synergy. NS5A and NS5B inhibition drugs currently belong to the leading group amongst many DAAs. These drugs will soon be available in Korea. We have to know the merits and adverse drug reactions of the new drug.
Antiviral Agents/*therapeutic use
;
Drug Therapy, Combination
;
Enzyme Inhibitors/therapeutic use
;
Genotype
;
Guidelines as Topic
;
Hepacivirus/genetics
;
Hepatitis C, Chronic/*drug therapy/immunology/virology
;
Humans
;
Viral Nonstructural Proteins/antagonists & inhibitors/metabolism
4.Prokaryotic expression and identification of human astrovirus nonstructural proteins, nsP1a and nsP1a/4.
Wenhui LIU ; Lili KAN ; Yongsheng CUI ; Liqian TAN ; Xuexue LIANG ; Xin LI ; Wei ZHAO
Chinese Journal of Virology 2015;31(1):46-50
Human astrovirus (HastV) is recognized as one of the leading causes of acute viral diarrhea in infants. The HastV non-structural protein, nsPla, and C-terminal protein, nsPla/4, contain various conserved functional domains,and may play an important role in virus replication, transcription and the virus-host interactions of HastV. This study used an E. coli system to investigate the expression of nsPla and nsPla/4 proteins. Firstly,the nsPla and nsPla/4 genes of HAstV-1 were cloned into the prokaryotic expression vector,PGEX-4T-1, to build the PGEX-4T-1a and PGEX-4T-la/4 fusion protein plasmids. Then, the recombinant plasmids were transformed into Escherichia coli BL21 (DE3) and induced with isopropyl-β-D-thiogalactopyranoside (IPTG). The optimal expression conditions of the two fusion proteins were identified and then analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting, respectively. The results showed that the pGEX-4T-la fusion protein was maximally expressed at 30 °C after 12 hours of induction with 1.0 mM IPTG. The pGEX-4T-la/4 fusion protein was maximally expressed at 20 °C after 8 hours of induction with 0.5 mM IPTG. Western blot analysis showed that the two fusion proteins specificity reacted with the anti-nsPla and anti-GST monoclonal antibodies, respectively. This study successfully obtained the HAstV non-structural protein, nsP1a, and its C-terminal protein nsP1a/4 protein using an E. coli system. This novel study lays the foundation for future research into the pathogenic mechanisms of human astrovirus and the functions of its non-structural protein.
Cloning, Molecular
;
Escherichia coli
;
genetics
;
metabolism
;
Gene Expression
;
Humans
;
Mamastrovirus
;
genetics
;
metabolism
;
Viral Nonstructural Proteins
;
genetics
;
metabolism
5.Immunogenicity and heterologous protection in mice with a recombinant adenoviral-based vaccine carrying a hepatitis C virus truncated NS3 and core fusion protein.
Jie GUAN ; Yao DENG ; Hong CHEN ; Yang YANG ; Bo WEN ; Wenjie TAN
Chinese Journal of Virology 2015;31(1):7-13
To develop a safe and broad-spectrum effective hepatitis C virus (HCV) T cell vaccine,we constructed the recombinant adenovirus-based vaccine that carried the hepatitis C virus truncated NS3 and core fusion proteins. The expression of the fusion antigen was confirmed by in vitro immunofluorescence and western blotting assays. Our results indicated that this vaccine not only stimulated antigen-specific antibody responses,but also activated strong NS3-specific T cell immune responses. NS3-specific IFN-γ+ and TNF-α+ CD4+ T cell subsets were also detected by a intracellular cytokine secretion assay. In a surrogate challenge assay based on a recombinant heterologous HCV (JFH1,2a) vaccinia virus,the recombinant adenovirus-based vaccine was capable of eliciting effective levels of cross-protection. These findings have im- portant implications for the study of HCV immune protection and the future development of a novel vaccine.
Adenoviridae
;
genetics
;
metabolism
;
Animals
;
CD4-Positive T-Lymphocytes
;
immunology
;
Cross Protection
;
Female
;
Genetic Vectors
;
biosynthesis
;
genetics
;
Hepacivirus
;
genetics
;
immunology
;
Hepatitis C
;
immunology
;
prevention & control
;
virology
;
Humans
;
Interferon-gamma
;
immunology
;
Mice
;
Mice, Inbred BALB C
;
Recombinant Proteins
;
administration & dosage
;
genetics
;
immunology
;
Viral Core Proteins
;
administration & dosage
;
genetics
;
immunology
;
Viral Hepatitis Vaccines
;
administration & dosage
;
genetics
;
immunology
;
Viral Nonstructural Proteins
;
administration & dosage
;
genetics
;
immunology
6.Advances in Parvovirus Non-structural Protein NS1 Induced Apoptosis.
Mengyu TU ; Fei LIU ; Shun CHEN ; Mingshu WANG ; Anchun CHENG
Chinese Journal of Virology 2015;31(6):679-684
Until now, more than seventeen parvovirus have been reported which can infect mammals and poultries. The infected cells appeared different properties of apoptosis and death, present a typical cytopathic effect. NS1 is a major nonstructural protein of parvovirus, with a conservative structure and function, which plays an important role in the viral life cycle. In addition to the influence on viral replication, the NS1 also participates in apoptosis induced by viruses. Parvovirus induced apoptosis which is mainly mediated by mitochondrial pathway, this review summarized the latest research progresses of parvovirus induced apoptosis.
Animals
;
Apoptosis
;
Humans
;
Parvoviridae Infections
;
physiopathology
;
veterinary
;
virology
;
Parvovirus
;
genetics
;
metabolism
;
Viral Nonstructural Proteins
;
genetics
;
metabolism
7.Optimization of electroporation parameters for ctenopharyngodon idellus kidney cells and transient expression of grass carp reovirus NS26 protein.
Yan LI ; Ya-Nan ZHANG ; Li-Qun LV
Chinese Journal of Virology 2014;30(3):278-284
In this study, pEGFP-N1 was chosen as the reporter plasmid and transferred into Ctenopharyngodon idellus kidney (CIK) cells by electroporation, and the optimal electroporation conditions were determined by testing the transfection efficiency with different voltages, pulse times, plasmid amounts, and numbers of shocks. The results showed that the maximum electroporation efficiency was achieved under the following conditions in a 0.2 cm electroporation cuvette containing CIK cells (1.5 x 10(7)/mL, 200 microl): electric voltage 200 V, pulse time 45 ms, plasmid 30 microg, and one electric shock. The total genomic RNA of grass carp reovirus (GCRV) was extracted in this experiment and reversely transcribed into cDNA, which was used to amplify the gene segment of GCRV non-structural protein NS26 using designed specific primers. The PCR product was recombined into pEGFP-N1 vector. The fusion protein EGFP-NS26 was successfully and efficiently expressed in the CIK cells by electroporation, which was confirmed by both fluorescent imaging and Western blot analysis. This experiment laid a foundation for further functional studies of the non-structural protein NS26 of GCRV.
Animals
;
Cell Line
;
Cyprinidae
;
Electroporation
;
Fish Diseases
;
virology
;
Gene Expression
;
Kidney
;
virology
;
Reoviridae
;
genetics
;
physiology
;
Reoviridae Infections
;
veterinary
;
virology
;
Viral Nonstructural Proteins
;
genetics
;
metabolism
8.Hepatitis C virus: virology and life cycle.
Chang Wook KIM ; Kyong Mi CHANG
Clinical and Molecular Hepatology 2013;19(1):17-25
Hepatitis C virus (HCV) is a positive sense, single-stranded RNA virus in the Flaviviridae family. It causes acute hepatitis with a high propensity for chronic infection. Chronic HCV infection can progress to severe liver disease including cirrhosis and hepatocellular carcinoma. In the last decade, our basic understanding of HCV virology and life cycle has advanced greatly with the development of HCV cell culture and replication systems. Our ability to treat HCV infection has also been improved with the combined use of interferon, ribavirin and small molecule inhibitors of the virally encoded NS3/4A protease, although better therapeutic options are needed with greater antiviral efficacy and less toxicity. In this article, we review various aspects of HCV life cycle including viral attachment, entry, fusion, viral RNA translation, posttranslational processing, HCV replication, viral assembly and release. Each of these steps provides potential targets for novel antiviral therapeutics to cure HCV infection and prevent the adverse consequences of progressive liver disease.
Antigens, CD81/metabolism
;
Genome, Viral
;
Hepacivirus/genetics/*physiology
;
Humans
;
RNA, Viral/metabolism
;
Scavenger Receptors, Class B/metabolism
;
Viral Envelope Proteins/chemistry/metabolism
;
Viral Nonstructural Proteins/chemistry/metabolism
;
Virus Assembly
;
Virus Internalization
;
Virus Replication
9.Construction and expression of six deletion mutants of human astrovirus C-terminal nsP1a/4 protein.
Wei ZHAO ; Ke NIU ; Jian ZHAO ; Yi-ming JIN ; Ting-ting SUI ; Wen WANG
Chinese Journal of Virology 2013;29(5):548-554
Human astrovirus (HAstV) is one of the leading causes of actue virual diarrhea in infants. HAstV-induced epithdlial cell apoptosis plays an important role in the pathogenesis of HAstV infection. Our previous study indicated that HAstV non-structural protein nsPla C-terminal protein nsPla/4 was the major apoptosis functional protein and probably contained the main apoptosis domains. In order to screen for astrovirus encoded apoptotic protien, nsPla/4 and six turncated proteins, which possessed nsPla/4 protein different function domain ,were cloned into green fluorescent protein (GFP) vector pEG-FP-N3. After 24-72 h transfection, the fusion protein expression in BHK21 cells, was analysis by fluorescence microscope and Western blot. The results indicated seven fusion proteins were observed successfully in BHK21 cell after transfected for 24 h. Western blot analysis showed that the level of fusion protein expressed in BHK21 cells was increased significantly at 72h compared to 48h in transfected cells. The successful expression of deletion mutants of nsPla/4 protein was an important foundation to gain further insights into the function of apoptosis domains of nsPla/4 protein and it would also provide research platform to further confirm the molecule pathogenic mechanism of human astrovirus.
Amino Acid Motifs
;
Astroviridae Infections
;
virology
;
Humans
;
Mamastrovirus
;
genetics
;
metabolism
;
Mutation
;
Sequence Deletion
;
Transfection
;
Viral Nonstructural Proteins
;
chemistry
;
genetics
;
metabolism
10.The biological function of auto-induced expression of the hepatitis C virus soluble core protein.
Xu-yang GONG ; Qi-huan MA ; Xi DU ; Jie-li HU ; Xue-fei CAI ; Ai-long HUANG
Chinese Journal of Hepatology 2013;21(8):565-569
OBJECTIVETo investigate the biological role of auto-induced expression of hepatitis C virus (HCV) core protein (protein C) using a recombinant protein in an in vitro cell-based system.
METHODSThe PCR-amplified full-length HCV protein C gene (573 bp) was inserted into the pET28a prokaryotic expression vector. The recombinant plasmid was transformed into BL21(DE3)pLysS E. coli to achieve high-concentration expression of the recombinant C protein by auto-induction. The recombinant protein C was purified by Ni-NTA affinity chromatography, and tested in a protein binding assay for its ability to bind the HCV NS3 protein.
RESULTSThe transformed E. coli produced a large amount of recombinant protein C, as detected in the sonicated supernatant of the bacteria culture. The antigenic reactivity of the recombinant protein C was confirmed by western blotting. However, the recombinant protein C could not be purified by Ni-NTA affinity chromatography, but co-precipitated with the HCV NS3 protein.
CONCLUSIONSoluble recombinant protein C was successfully expressed by auto-induction, and shown to interact with the HCV NS3 protein, which provides a novel insight into the putative biological activity of this factor in HCV-related molecular processes. Future studies of this recombinant HCV protein C's crystal structure and antigenicity may provide further clues to its biological function(s) and potential for clinical applications.
Escherichia coli ; metabolism ; Genetic Vectors ; Hepacivirus ; Recombinant Proteins ; genetics ; metabolism ; Viral Core Proteins ; biosynthesis ; genetics ; metabolism ; Viral Nonstructural Proteins ; metabolism

Result Analysis
Print
Save
E-mail