1.Optimization of expression conditions and determination the proteolytic activity of codon-optimized SARS-CoV-2 main protease in Escherichia coli.
Yunyu CHEN ; Zhenghao FU ; Gangan YAN ; Yuan LIN ; Xiaoping LIU
Chinese Journal of Biotechnology 2021;37(4):1334-1345
The main protease (Mpro) of SARS-CoV-2 is a highly conserved and mutation-resistant coronaviral enzyme, which plays a pivotal role in viral replication, making it an ideal target for the development of novel broad-spectrum anti-coronaviral drugs. In this study, a codon-optimized Mpro gene was cloned into pET-21a and pET-28a expression vectors. The recombinant plasmids were transformed into E. coli Rosetta(DE3) competent cells and the expression conditions were optimized. The highly expressed recombinant proteins, Mpro and Mpro-28, were purified by HisTrapTM chelating column and its proteolytic activity was determined by a fluorescence resonance energy transfer (FRET) assay. The FRET assay showed that Mpro exhibits a desirable proteolytic activity (25 000 U/mg), with Km and kcat values of 11.68 μmol/L and 0.037/s, respectively. The specific activity of Mpro is 25 times that of Mpro-28, a fusion protein carrying a polyhistidine tag at the N and C termini, indicating additional residues at the N terminus of Mpro, but not at the C terminus, are detrimental to its proteolytic activity. The preparation of active SARS-CoV-2 Mpro through codon-optimization strategy might facilitate the development of the rapid screening assays for the discovery of broad-spectrum anti-coronaviral drugs targeting Mpro.
COVID-19
;
Codon/genetics*
;
Cysteine Endopeptidases/genetics*
;
Escherichia coli/genetics*
;
Humans
;
Peptide Hydrolases
;
SARS-CoV-2
;
Viral Nonstructural Proteins/genetics*
2.Development of a sandwich ELISA for detecting 3AB non-structural protein of foot-and-mouth disease virus.
Yuanfang FU ; Wei HE ; Pu SUN ; Lin YANG ; Huifang BAO ; Yimei CAO ; Xingwen BAI ; Pinghua LI ; Dong LI ; Yingli CHEN ; Lei LIU ; Zengjun LU ; Zaixin LIU
Chinese Journal of Biotechnology 2020;36(11):2357-2366
Antigenic purity is important for quality control of the foot-and-mouth (FMD) whole virus inactivated vaccine. The recommended method for evaluation the antigenic purity of FMD vaccine is to check the serum conversion to non-structural protein (NSP) 3AB antibody after 2 to 3 times inoculation of animals with inactivated vaccine. In this study, we developed a quantitative ELISA to detect the amount of residual 3AB in vaccine antigen, to provide a reference to evaluate the antigenic purity of FMD vaccine. Monoclonal antibody (Mab) of NSP 3A and HRP-conjugated Mab of NSP 3B were used to establish a sandwich ELISA to quantify the NSP 3AB in vaccine antigen of FMD. Purified NSP 3AB expressed in Escherichia coli was serially diluted and detected to draw the standard curve. The detectable limit was determined to be the lowest concentration of standard where the ratio of its OD value to OD blank well was not less than 2.0. Results: The OD value was linearly corelated with the concentration of 3AB protein within the range between 4.7 and 600 ng/mL. The correlation coefficient R² is greater than 0.99, and the lowest detectable limit is 4.7 ng/mL. The amount of 3AB protein in non-purified inactivated virus antigen was detected between 9.3 and 200 ng/mL depending on the 12 different virus strains, whereas the amount of 3AB in purified virus antigen was below the lowest detectable limit. The amount of 3AB in 9 batches of commercial FMD vaccine antigens was between 9.0 and 74 ng/mL, whereas it was below the detectable limit in other 24 batches of commercial vaccine antigens. Conclusion: the sandwich ELISA established in this study is specific and sensitive to detect the content of 3AB protein in vaccine antigen of FMD, which will be a useful method for evaluation of the antigenic purity and quality control of FMD inactivated vaccine.
Animals
;
Antibodies, Viral
;
Enzyme-Linked Immunosorbent Assay
;
Foot-and-Mouth Disease/prevention & control*
;
Foot-and-Mouth Disease Virus
;
Viral Nonstructural Proteins/genetics*
;
Viral Vaccines
3.Enhancement of Virus Replication in An Influenza A Virus NS1-Expresssing 293 Cell Line.
Wu Yang ZHU ; Xiao Yan TAO ; Xin Jun LYU ; Peng Cheng YU ; Zhuo Zhuang LU ;
Biomedical and Environmental Sciences 2016;29(3):224-228
The nonstructural protein 1 (NS1) of influenza A virus, which is absent from the viral particle, but highly expressed in infected cells, strongly antagonizes the interferon (IFN)-mediated antiviral response. We engineered an NS1-expressing 293 (293-NS1) cell line with no response to IFN stimulation. Compared with the parental 293 cells, the IFN-nonresponsive 293-NS1 cells improved the growth capacity of various viruses, but the introduction of NS1 barely enhanced the propagation of Tahyna virus, a negative-strand RNA virus. In particular, fastidious enteric adenovirus that replicates poorly in 293 cells may grow more efficiently in 293-NS1 cells; thus, IFN-nonresponsive 293-NS1 cells might be of great value in diagnostic laboratories for the cultivation and isolation of human enteric adenoviruses.
Cell Line
;
Gene Expression Regulation
;
HEK293 Cells
;
Humans
;
Influenza A virus
;
physiology
;
Viral Nonstructural Proteins
;
genetics
;
metabolism
;
Virus Cultivation
;
methods
;
Virus Replication
;
physiology
4.H1-A, a compound isolated from Fusarium oxysporum inhibits hepatitis C virus (HCV) NS3 serine protease.
Li-Yuan YANG ; Jun LIN ; Bin ZHOU ; Yan-Gang LIU ; Bao-Quan ZHU
Chinese Journal of Natural Medicines (English Ed.) 2016;14(4):299-302
The present study was aimed to isolate the active compounds from the fermentation products of Fusarium oxysporum, which had hepatitis C virus (HCV) NS3 protease inhibitory activity. A bioactive compound was isolated by reverse-phase silica-gel column chromatography, silica-gel column chromatography, semi-preparative reverse-phase High Performance Liquid Chromatography (HPLC), and then its molecular structure was elucidated based on the spectrosopic analysis. As a result, the compound (H1-A, 1) Ergosta-5, 8 (14), 22-trien-7-one, 3-hydroxy-,(3β, 22E) was isolated and identified. To the best of our knowledge, this was the first report on the isolation of H1-A from microorganisms with the inhibitory activity of NS3 protease.
Enzyme Inhibitors
;
chemistry
;
isolation & purification
;
metabolism
;
Fusarium
;
chemistry
;
metabolism
;
Hepacivirus
;
drug effects
;
enzymology
;
genetics
;
Hepatitis C
;
virology
;
Humans
;
Magnetic Resonance Spectroscopy
;
Viral Nonstructural Proteins
;
antagonists & inhibitors
;
metabolism
5.New Therapeutic Agent for Chronic Hepatitis C: Direct Acting Agent.
The Korean Journal of Gastroenterology 2015;66(1):5-9
Peg-interferon and ribavirin has been the standard therapy of chronic hepatitis C for the past 15 years in Korea. However, the treatment paradigm is changing. Direct acting agents (DAAs) are oral pills that can be easily taken. In addition, DAAs are more effective and have less adverse reactions compared to the previously used drugs. Chronic hepatitis C is hard to treat because the virus is error-prone virus. Host immunity is helpless against the hepatitis C virus since it evades the host immunity through various complex mechanisms. There are 6 genotypes. Quasispecies can co-exist even in the same patients. The treatment strategy is based on the combination of the individual drug corresponding to each step of viral replication process. NS5B nucleosides are the most powerful and effective drug available until now. Other drugs with different mechanisms of action can be used to provide synergy. NS5A and NS5B inhibition drugs currently belong to the leading group amongst many DAAs. These drugs will soon be available in Korea. We have to know the merits and adverse drug reactions of the new drug.
Antiviral Agents/*therapeutic use
;
Drug Therapy, Combination
;
Enzyme Inhibitors/therapeutic use
;
Genotype
;
Guidelines as Topic
;
Hepacivirus/genetics
;
Hepatitis C, Chronic/*drug therapy/immunology/virology
;
Humans
;
Viral Nonstructural Proteins/antagonists & inhibitors/metabolism
6.Naturally occurring NS5B variants resistant to non-nucleoside or nucleoside polymerase inhibitors among treatment-naïve hepatitis C patients in south China.
Zhanyi LI ; Ying LIU ; Qingxian CAI ; Xiaoqiong SHAO ; Ying YAN ; Zhixin ZHAO
Chinese Journal of Hepatology 2015;23(9):653-657
OBJECTIVETo determine the prevalence of mutations in the non-structural protein 5B (NS5B) of the hepatitis C virus (HCV),which are associated with natural resistance to non-nucleoside and nucleoside polymerase inhibitors (PIs),in treatment-naive hepatitis C patients in south China.
METHODSA nested PCR protocol that amplified three different regions of NS5B was used to detect the naturally occurring drag-resistant substitutions.Direct PCR sequencing was performed to analyze the sequences.
RESULTSNS5B mutations known to confer resistance to nucleoside PIs,such as A15G,S96T and S282T,were mainly detected in HCV genotype 6a (20/88,22.73%).Of the NS5B mutations known to confer resistance to non-nucleoside PIs,C316N and S365A were detected in HCV genotype lb (60/60,100% and 2/60,3.33%, respectively) and I482L and V499A were mainly detected in HCV genotype 2a (9/9,100% and 4/4,100%, respectively) and HCV genotype 6a (9/9,100% and 4/4,100%, respectively).Other NS5B mutations found in the study population included A1 5S,S365F,S365P,S368A and S368L;although none of these has been previously shown to confer resistance to PIs.
CONCLUSIONNaturally occurring dominant PI resistance mutations in NS5B exist in treatment-na(i)ve hepatitis C patients in south China and may be related to the virus genotype.
Antiviral Agents ; pharmacology ; China ; Drug Resistance, Viral ; Genotype ; Hepacivirus ; drug effects ; genetics ; Hepatitis C ; drug therapy ; virology ; Humans ; Mutation ; Viral Nonstructural Proteins ; genetics
7.Prokaryotic expression and identification of human astrovirus nonstructural proteins, nsP1a and nsP1a/4.
Wenhui LIU ; Lili KAN ; Yongsheng CUI ; Liqian TAN ; Xuexue LIANG ; Xin LI ; Wei ZHAO
Chinese Journal of Virology 2015;31(1):46-50
Human astrovirus (HastV) is recognized as one of the leading causes of acute viral diarrhea in infants. The HastV non-structural protein, nsPla, and C-terminal protein, nsPla/4, contain various conserved functional domains,and may play an important role in virus replication, transcription and the virus-host interactions of HastV. This study used an E. coli system to investigate the expression of nsPla and nsPla/4 proteins. Firstly,the nsPla and nsPla/4 genes of HAstV-1 were cloned into the prokaryotic expression vector,PGEX-4T-1, to build the PGEX-4T-1a and PGEX-4T-la/4 fusion protein plasmids. Then, the recombinant plasmids were transformed into Escherichia coli BL21 (DE3) and induced with isopropyl-β-D-thiogalactopyranoside (IPTG). The optimal expression conditions of the two fusion proteins were identified and then analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting, respectively. The results showed that the pGEX-4T-la fusion protein was maximally expressed at 30 °C after 12 hours of induction with 1.0 mM IPTG. The pGEX-4T-la/4 fusion protein was maximally expressed at 20 °C after 8 hours of induction with 0.5 mM IPTG. Western blot analysis showed that the two fusion proteins specificity reacted with the anti-nsPla and anti-GST monoclonal antibodies, respectively. This study successfully obtained the HAstV non-structural protein, nsP1a, and its C-terminal protein nsP1a/4 protein using an E. coli system. This novel study lays the foundation for future research into the pathogenic mechanisms of human astrovirus and the functions of its non-structural protein.
Cloning, Molecular
;
Escherichia coli
;
genetics
;
metabolism
;
Gene Expression
;
Humans
;
Mamastrovirus
;
genetics
;
metabolism
;
Viral Nonstructural Proteins
;
genetics
;
metabolism
8.Immunogenicity and heterologous protection in mice with a recombinant adenoviral-based vaccine carrying a hepatitis C virus truncated NS3 and core fusion protein.
Jie GUAN ; Yao DENG ; Hong CHEN ; Yang YANG ; Bo WEN ; Wenjie TAN
Chinese Journal of Virology 2015;31(1):7-13
To develop a safe and broad-spectrum effective hepatitis C virus (HCV) T cell vaccine,we constructed the recombinant adenovirus-based vaccine that carried the hepatitis C virus truncated NS3 and core fusion proteins. The expression of the fusion antigen was confirmed by in vitro immunofluorescence and western blotting assays. Our results indicated that this vaccine not only stimulated antigen-specific antibody responses,but also activated strong NS3-specific T cell immune responses. NS3-specific IFN-γ+ and TNF-α+ CD4+ T cell subsets were also detected by a intracellular cytokine secretion assay. In a surrogate challenge assay based on a recombinant heterologous HCV (JFH1,2a) vaccinia virus,the recombinant adenovirus-based vaccine was capable of eliciting effective levels of cross-protection. These findings have im- portant implications for the study of HCV immune protection and the future development of a novel vaccine.
Adenoviridae
;
genetics
;
metabolism
;
Animals
;
CD4-Positive T-Lymphocytes
;
immunology
;
Cross Protection
;
Female
;
Genetic Vectors
;
biosynthesis
;
genetics
;
Hepacivirus
;
genetics
;
immunology
;
Hepatitis C
;
immunology
;
prevention & control
;
virology
;
Humans
;
Interferon-gamma
;
immunology
;
Mice
;
Mice, Inbred BALB C
;
Recombinant Proteins
;
administration & dosage
;
genetics
;
immunology
;
Viral Core Proteins
;
administration & dosage
;
genetics
;
immunology
;
Viral Hepatitis Vaccines
;
administration & dosage
;
genetics
;
immunology
;
Viral Nonstructural Proteins
;
administration & dosage
;
genetics
;
immunology
9.Advances in Parvovirus Non-structural Protein NS1 Induced Apoptosis.
Mengyu TU ; Fei LIU ; Shun CHEN ; Mingshu WANG ; Anchun CHENG
Chinese Journal of Virology 2015;31(6):679-684
Until now, more than seventeen parvovirus have been reported which can infect mammals and poultries. The infected cells appeared different properties of apoptosis and death, present a typical cytopathic effect. NS1 is a major nonstructural protein of parvovirus, with a conservative structure and function, which plays an important role in the viral life cycle. In addition to the influence on viral replication, the NS1 also participates in apoptosis induced by viruses. Parvovirus induced apoptosis which is mainly mediated by mitochondrial pathway, this review summarized the latest research progresses of parvovirus induced apoptosis.
Animals
;
Apoptosis
;
Humans
;
Parvoviridae Infections
;
physiopathology
;
veterinary
;
virology
;
Parvovirus
;
genetics
;
metabolism
;
Viral Nonstructural Proteins
;
genetics
;
metabolism
10.Effect of Deletion of the Carboxyl Terminal of the NS1 Protein on Pathogenicity of the Influenza B Virus.
Xue LI ; Zhijun YU ; Weiyang SUN ; Qiang CHEN ; Tiecheng WANG ; Songtao YANG ; Geng HUANG ; Yuwei GAO ; Xianzhu XIA ; Xuemei ZHANG
Chinese Journal of Virology 2015;31(4):404-409
To analyze the molecular basis of the variation of the pathogenicity of the influenza B virus, we rescued a recombinant virus with a deletion in the carboxyl terminal of the NS1 protein using reverse genetics based on the parental virus B-S9 of B/Yamagata/16/88. A mutant strain with a deletion of 171 amino acids in the carboxyl terminal of the NS1 protein was named "B-L5". BALB/c mice were inoculated with 3 X 105 EID50 of B-L5 and the parental virus B-S9, respectively. Then, weight changes, survival, and viral titers were documented. During 3 days post-inoculation (dpi) to 7 dpi, the weight of mice infected with B-S9 decreased. However, the weight of mice infected with B-L5 showed weight decreases only at 2 dpi, and quickly recovered at 3 dpi. B-S9 and B-L5 could replicate in the lungs of BALB/c mice. However, viral titers in the lungs of mice infected with B-L5 were 7900-times lower than those of mice infected with B-S9 at 3 dpi. Viral titers in the lungs of mice infected with B-L5 were not detected at 6 dpi. These results showed that, compared with the parent virus B-S9, the mutant virus B-L5 showed lower pathogenicity in BALB/c mice. Our study suggests that deletion of the carboxyl terminal of the NS1 protein decreases the pathogenicity of the influenza B virus. Establishment of a reverse-genetics system for the B influenza virus will provide a platform for studying its pathogenesis, and mechanism of transmission, and for developing live-attenuated influenza B virus vaccines.
Animals
;
Body Weight
;
Dogs
;
Female
;
HEK293 Cells
;
Humans
;
Influenza B virus
;
genetics
;
pathogenicity
;
physiology
;
Madin Darby Canine Kidney Cells
;
Mice
;
Mice, Inbred BALB C
;
Sequence Deletion
;
Survival Analysis
;
Viral Load
;
genetics
;
Viral Nonstructural Proteins
;
chemistry
;
genetics
;
Virulence

Result Analysis
Print
Save
E-mail