1.Generation of Japanese Encephalitis Virus-like Particle Vaccine and Preliminary Evaluation of Its Protective Efficiency.
Yanfang ZHANG ; Ruikun DU ; Shaomei HUANG ; Tao ZHANG ; Jinliang LIU ; Bibo ZHU ; Hualin WANG ; Fei DENG ; Shengbo CAO
Chinese Journal of Virology 2016;32(2):150-155
The cDNA fragment of JEV prME gene was cloned into the baculovirus shuttle vector (bacmid) to construct a recombinant baculovirus vector, defined as AcBac-prME. Then the recombinant baculovirus Ac-prME was obtained by transfecting Sf9 cells with AcBac-prME. Western blot analysis and immunofluorescence results indicated that both prM and E proteins were efficiently expressed in Sf9 cells. Electron microscopy suggested that prME was assembled into JEV-VLPs. To further evaluate the potential of JEV-VLPs as vaccine, the mice were immunized with JEV-VLPs and then challenged with lethal JEV. The results of mice survival and pathological changes demonstrated that the JEV-VLPs performed complete protection against JEV-P3 strain and relieved pathological changes in the mice brain significant. This study suggest that JEV-VLPs would be a potential vaccine for Japanese encephalitis virus.
Animals
;
Antibodies, Viral
;
immunology
;
Encephalitis Virus, Japanese
;
genetics
;
immunology
;
Encephalitis, Japanese
;
immunology
;
prevention & control
;
virology
;
Humans
;
Japanese Encephalitis Vaccines
;
administration & dosage
;
genetics
;
immunology
;
Mice
;
Mice, Inbred BALB C
;
Sf9 Cells
;
Vaccination
;
Vaccines, Virus-Like Particle
;
administration & dosage
;
genetics
;
immunology
;
Viral Envelope Proteins
;
administration & dosage
;
genetics
;
immunology
2.Eukaryotic Expression and Immunogenic Research of Recombination Ebola Virus Membrane Protein Gp-Fc.
Xiaoguang ZHANG ; Ren YANG ; Jiao WANG ; Xuan WANG ; Mieling HOU ; Lina AN ; Ying ZHU ; Yuxi CAO ; Yi ZENG
Chinese Journal of Virology 2016;32(1):8-13
We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.
Animals
;
Antibodies, Viral
;
immunology
;
Ebolavirus
;
genetics
;
immunology
;
Female
;
Gene Expression
;
Hemorrhagic Fever, Ebola
;
immunology
;
virology
;
Humans
;
Immunization
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Recombinant Proteins
;
genetics
;
immunology
;
Viral Envelope Proteins
;
genetics
;
immunology
3.Development of monoclonal antibodies against the gp90 protein of reticuloendotheliosis virus and mapping of their recognition regions.
Mingming SUN ; Xiaoqi LI ; Hong CAO ; Yongqiang WANG ; Shijun J ZHENG
Chinese Journal of Biotechnology 2015;31(1):75-85
In order to develop monoclonal antibodies (McAbs) against the gp90 protein of reticuloendotheliosis virus (REV), the His-tagged gp90 protein of REV was used to immunize BALB/c mice. Hybridomas were generated by fusing mouse myeloma cells SP2/0 with the splenocytes from the immunized mice. After screening and 3 rounds of cloning process, 3 hybridomas (3G5-B8, 3G5-A10 and 1G12) that stably secreted McAbs against the REV-gp90 were obtained. The isotypes of the McAbs were determined to be IgG1, IgG1 and IgG2b. The McAbs specifically bound to gp90 in REV-infected DF-1 cells, as demonstrated by Western blotting and indirect immunofluorescence assay. The recognition regions on gp90 that were recognized by 3G5-B8/3G5-A10 and 1G12 were located between amino acids 200 to 245 and 230 to 235, respectively, as demonstrated by Western blotting analysis. These McAbs will be useful in the diagnosis and pathogenesis study of REV.
Animals
;
Antibodies, Monoclonal
;
biosynthesis
;
Antibody Specificity
;
Blotting, Western
;
Epitope Mapping
;
Hybridomas
;
Immunoglobulin G
;
biosynthesis
;
Mice
;
Mice, Inbred BALB C
;
Reticuloendotheliosis virus
;
immunology
;
Viral Envelope Proteins
;
immunology
4.Mapping of the B Cell Neutralizing Epitopes on ED III of Envelope Protein from Dengue Virus.
Yaying LIN ; Kun WEN ; Yonghui GUO ; Liwen QIU ; Yuxian PAN ; Lan YU ; Biao DI ; Yue CHEN
Chinese Journal of Virology 2015;31(6):665-673
Dengue virus (DENV) envelope [E] protein is the major surface protein of the virions that indued neutralizing antibodies. The domain III of envelope protein (EDIII) is an immunogenic region that holds potential for the development of vaccines; however, the epitopes of DENV EDIII, especially neutralizing B-cell linear epitopes, have not been comprehensively mapped. We mapped neutralizing B-cell linear epitopes on DENV-1 EDIII using 27 monoclonal antibodies against DENV-1 EDIII proteins from mice immunized with the DENV-1 EDIII. Epitope recognition analysis was performed using two set of sequential overlapping peptides (16m and 12m) that spanned the entire EDIII protein from DENV-1, respectively. This strategy identified a DENV-1 type- specific and a group-specific neutralizing epitope, which were highly conserved among isolates of DENV-1 and the four DENV serotypes and located at two regions from DENV-1 E, namely amino acid residues 309-320 and 381-392(aa 309-320 and 381-392), respectively. aa310 -319(310KEVAETQHGT319)was similar among the four DENV serotypes and contact residues on aa 309 -320 from E protein were defined and found that substitution of residues E309 , V312, A313 and V320 in DENV-2, -3, -4 isolates were antigenically silent. We also identified a DENV-1 type-specific strain-restricted neutralizing epitope, which was located at the region from DENV-1 E, namely amino acid residues 329-348 . These novel type- and group-specific B-cell epitopes of DENV EDIII may aid help us elucidate the dengue pathogenesis and accelerate vaccine design.
Amino Acid Sequence
;
Animals
;
Antibodies, Neutralizing
;
immunology
;
Dengue
;
virology
;
Dengue Virus
;
chemistry
;
genetics
;
immunology
;
Epitope Mapping
;
Epitopes, B-Lymphocyte
;
chemistry
;
genetics
;
immunology
;
Humans
;
Mice
;
Molecular Sequence Data
;
Viral Envelope Proteins
;
chemistry
;
genetics
;
immunology
5.Hsp70 Fused with the Envelope Glycoprotein E0 of Classical Swine Fever Virus Enhances Immune Responses in Balb/c Mice.
Qianqian XU ; Xiaomin ZHANG ; Jiao JING ; Baojun SHI ; Shiqi WANG ; Bin ZHOU ; Puyan CHEN
Chinese Journal of Virology 2015;31(4):363-369
Heat-shock protein (Hsp) 70 potentiates specific immune responses to some antigenic peptides fused to it. Here, the prokaryotic plasmids harboring the envelope glycoprotein E0 gene of classical swine fever virus (CSFV) and/or the Hsp70 gene of Haemophilus parasuis were constructed and expressed in Escherichia coli Rosseta 2(R2). The fusion proteins were then purified. Groups of Balb/c mice were immunized with these fusion proteins, respectively, and sera collected 7 days after the third immunization. Immune effects were determined via an enzyme-linked immunosorbent assay and flow cytometric analyses. E0-Hsp70 fusion protein and E0+Hsp70 mixture significantly improved the titer of E-specific antibody, levels of CD4+ and CD8+ T cells, and release of interferon-γ. These findings suggested that Hsp70 can significantly enhance the immune effects of the envelope glycoprotein E0 of CSFV, thereby laying the foundation of further application in pigs.
Animals
;
Antibodies, Viral
;
blood
;
CD4-Positive T-Lymphocytes
;
cytology
;
immunology
;
CD8-Positive T-Lymphocytes
;
cytology
;
immunology
;
Cell Proliferation
;
Classical swine fever virus
;
genetics
;
Female
;
HSP70 Heat-Shock Proteins
;
genetics
;
immunology
;
Haemophilus parasuis
;
genetics
;
Immunization
;
Interferon-gamma
;
metabolism
;
Mice
;
Mice, Inbred BALB C
;
Plasmids
;
genetics
;
Recombinant Fusion Proteins
;
genetics
;
immunology
;
Viral Envelope Proteins
;
genetics
6.Positive effects of porcine IL-2 and IL-4 on virus-specific immune responses induced by the porcine reproductive and respiratory syndrome virus (PRRSV) ORF5 DNA vaccine in swine.
Deyuan TANG ; Jian LIU ; Chunyan LI ; Hua ZHANG ; Ping MA ; Xianfeng LUO ; Zhiyong ZENG ; Nining HONG ; Xia LIU ; Bin WANG ; Feng WANG ; Zhenlei GAN ; Fei HAO
Journal of Veterinary Science 2014;15(1):99-109
The purpose of this study was to investigate the effects of porcine interleukin (IL)-2 and IL-4 genes on enhancing the immunogenicity of a porcine reproductive and respiratory syndrome virus ORF5 DNA vaccine in piglets. Eukaryotic expression plasmids pcDNA-ORF5, pcDNA-IL-2, and pcDNA-IL-4 were constructed and then expressed in Marc-145 cells. The effects of these genes were detected using an indirect immunofluorescent assay and reverse transcription polymerase chain reaction (RT-PCR). Characteristic fluorescence was observed at different times after pcDNA-ORF5 was expressed in the Marc-145 cells, and PCR products corresponding to ORF5, IL-2, and IL-4 genes were detected at 48 h. Based on these data, healthy piglets were injected intramuscularly with different combinations of the purified plasmids: pcDNA-ORF5 alone, pcDNA-ORF5 + pcDNA-IL-2, pcDNA-ORF5 + pcDNA-IL-4, and pcDNA-ORF5 + pcDNAIL-4 + pcDNA-IL-2. The ensuing humoral immune responses, percentages of CD4+ and CD8+ T lymphocytes, proliferation indices, and interferon-gamma expression were analyzed. Results revealed that the piglets co-immunized with pcDNA-ORF5 + pcDNA-IL-4 + pcDNA-IL-2 plasmids developed significantly higher antibody titers and neutralizing antibody levels, had significantly increased levels of specific T lymphocyte proliferation, elevated percentages of CD4+ and CD8+ T lymphocytes, and significantly higher IFN-gamma production than the other inoculated pigs (p < 0.05).
Animals
;
Cell Line
;
Escherichia coli/genetics
;
Haplorhini
;
Immunity, Cellular
;
Interleukin-2/genetics/*metabolism
;
Interleukin-4/genetics/*metabolism
;
Neutralization Tests/veterinary
;
Plasmids
;
Porcine Reproductive and Respiratory Syndrome/*prevention & control
;
Porcine respiratory and reproductive syndrome virus/*immunology
;
Recombinant Proteins/genetics/metabolism
;
Swine
;
Vaccines, DNA/immunology
;
Viral Envelope Proteins/*genetics/metabolism
;
Viral Vaccines/*immunology
7.Recombinant Kluyveromyces lactis expressing highly pathogenic porcine reproductive and respiratory syndrome virus GP5 elicits mucosal and cell-mediated immune responses in mice.
Haiyan ZHAO ; Yalan WANG ; Zhitao MA ; Yongqiang WANG ; Wen Hai FENG
Journal of Veterinary Science 2014;15(2):199-208
Currently, killed-virus and modified-live porcine reproductive and respiratory syndrome virus (PRRSV) vaccines are used to control porcine reproductive and respiratory syndrome. However, both types of vaccines have inherent drawbacks; accordingly, the development of novel PRRSV vaccines is urgently needed. Previous studies have suggested that yeast possesses adjuvant activities, and it has been used as an expression vehicle to elicit immune responses to foreign antigens. In this report, recombinant Kluyveromyces lactis expressing GP5 of HP-PRRSV (Yeast-GP5) was generated and immune responses to this construct were analyzed in mice. Intestinal mucosal PRRSV-specific sIgA antibody and higher levels of IFN-gamma in spleen CD4+ and CD8+ T cells were induced by oral administration of Yeast-GP5. Additionally, Yeast-GP5 administered subcutaneously evoked vigorous cell-mediated immunity, and PRRSV-specific lymphocyte proliferation and IFN-gamma secretion were detected in the splenocytes of mice. These results suggest that Yeast-GP5 has the potential for use as a vaccine for PRRSV in the future.
Administration, Oral
;
Animals
;
Antibodies, Viral/*immunology
;
B-Lymphocytes/immunology/virology
;
Enzyme-Linked Immunosorbent Assay
;
*Immunity, Cellular
;
*Immunity, Mucosal
;
Injections, Subcutaneous
;
Kluyveromyces/genetics
;
Mice
;
Mice, Inbred BALB C
;
Porcine respiratory and reproductive syndrome virus/*immunology
;
Recombinant Proteins/genetics/immunology
;
T-Lymphocytes/immunology/virology
;
Viral Envelope Proteins/*genetics/*immunology
;
Viral Vaccines/administration & dosage/*pharmacology
8.Research progress on ebola virus glycoprotein.
Guo-Yong DING ; Zhi-Yu WANG ; Lu GAO ; Bao-Fa JIANG
Chinese Journal of Virology 2013;29(2):233-237
Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans and there are no effective therapeutic or prophylactic treatments available. The glycoprotein (GP) of EBOV is a transmembrane envelope protein known to play multiple functions including virus attachment and entry, cell rounding and cytotoxicity, down-regulation of host surface proteins, and enhancement of virus assembly and budding. GP is the primary target of protective immunity and the key target for developing neutralizing antibodies. In this paper, the research progress on genetic structure, pathogenesis and immunogenicity of EBOV GP in the last 5 years is reviewed.
Animals
;
Antibodies, Viral
;
immunology
;
Ebolavirus
;
genetics
;
immunology
;
physiology
;
Glycoproteins
;
genetics
;
immunology
;
metabolism
;
Hemorrhagic Fever, Ebola
;
immunology
;
virology
;
Humans
;
Viral Envelope Proteins
;
genetics
;
immunology
;
metabolism
;
Virus Assembly
9.Study on using NSP2 protein of porcine reproductive and respiratory syndrome virus (HuN4-F112) to express E2 neutralizing epitope of classical swine fever virus.
Yan-Zhao XU ; Yan-Jun ZHOU ; Wu TONG ; Ling LI ; Yi-Feng JIANG ; Guang-Zhi TONG
Chinese Journal of Virology 2013;29(1):17-25
Establishment of recombinant porcine reproductive and respiratory syndrome virus (PRRSV) with co-expression E2 Epitope of Classical Swine Fever virus (CSFV) is a crucial step to develop a genetic engineered vaccine against PRRSV and CSFV. Reverse genetic manipulation could be adopted as a com monly used technique. In this study, we focus on using nonessential regions of NSP2 (aa480-532 and aa508-532) as viral vector to express E2 Epitope of CSFV. A neutralizing epitope of classical swine fever virus (CSFV) E2 protein was inserted into the two nonessential region of nsp2 by the method of mutant PCR, basing on the infectious clone of HuN4-F112 vaccine strain. The co-expressed full-length cDNA clones (psk-HuN4-F112-delta508-532 + E2 and psk-HuN4-F112-delta480-532 + E2) were assembled by cloning and splice of the gene fragments. The completely assembled full-length cDNA clones were confirmed by sequence and Swa I enzyme digestion. Capped RNAs were transcribed in vitro from a full-length cDNA clone of the viral genome and transfected into BHK-21 cells by liposome to acquire the rescued virus. The rescued recombinant viruses were passaged on MARC-145 cells. The successfully rescued viruses were tested by RT-PCR, digestion, and genome sequence. The results showed that these rescued viruses could be distinguished from the parental virus (HuN4-F112) with the mutant genetic marker (Mlu I enzyme site of virual genome at 14 667nt was created by synonymous mutation) and the inserted nsp2 gene region. The results of IFA showed that the inserted E2 epitope could be expressed by the recombinant viruses and the E2 epitope gene was stable during the viral serial passage. The results of plaque assay and viral growth curve showed that the recovery viruses possessed similar characterses of viral growth to those of the parental virus. In summary, the full-length infectious cDNA clones containing the marker gene were constructed and the marker recombinant viruses were rescued. The results suggested that these stable infectious clones could be used as an important tool for development of novel vaccine against PRRSV.
Base Sequence
;
Cysteine Endopeptidases
;
genetics
;
Epitopes
;
genetics
;
Molecular Sequence Data
;
Porcine respiratory and reproductive syndrome virus
;
genetics
;
Viral Envelope Proteins
;
genetics
;
immunology
;
Viral Vaccines
;
immunology
10.Construction and screening of SARS-CoV S protein-specific phage displayed antigen library.
Rui-Ping WU ; Jia-Zi MENG ; Yu-Xian HE
Chinese Journal of Virology 2013;29(3):280-286
The aim of this study is to construct a SARS-CoV S protein-specific phage displayed antigen library for the epitope characterization of anti-S monoclonal antibodies (mAbs). First, the full-length gene of SARS-S protein was PCR amplified, purified and then digested with DNase I to obtain DNA fragments in the size range of 50-500 bp. The resulting fragments were blunt-end ligated to the modified phage display vector pComb3XSS. The reactions were electrotransformed into XL1-Blue and infected with VCSM13 helper phage. The SARS-CoV S protein-specific phage displayed antigen library was biopanned and screened against two anti-S mAbs, S-M1 and S-M2. The results showed that we successfully constructed the phage displayed antigen library with a size of 5.7 x 10(6). After three-rounds of biopanning, 14 positive phage clones for S-M1 and 15 for S-M2 were respectively identified. Sequence analyses revealed the possible epitopes of two mAbs. Therefore, the S protein-specific phage displayed antigen library provides a crucial platform for the epitope characterization of anti-S antibodies and it is highly valuable for development of SARS vaccines and diagnostics.
Antibodies, Viral
;
immunology
;
Bacteriophages
;
genetics
;
metabolism
;
Epitopes
;
genetics
;
immunology
;
Humans
;
Membrane Glycoproteins
;
genetics
;
immunology
;
Peptide Library
;
SARS Virus
;
genetics
;
immunology
;
Severe Acute Respiratory Syndrome
;
immunology
;
virology
;
Spike Glycoprotein, Coronavirus
;
Viral Envelope Proteins
;
genetics
;
immunology

Result Analysis
Print
Save
E-mail