1.Advances in studies on steroidal alkaloids and their pharmacological activities in genus Veratrum.
Meng-Zhen ZHANG ; Li-Juan GAO ; Xu SHI-FANG ; Wen-Kang HUANG ; Li XIAO-YU ; Ye YI-PING
China Journal of Chinese Materia Medica 2020;45(21):5129-5142
Genus Veratrum plants contain a diversity of steroidal alkaloids, so far at least 184 steroidal alkaloids attributed to cevanine type(A-1~A-69), veratramine type(B-1~B-21), jervanine type(C-1~C-31), solanidine type(D-1~D-10) and verazine type(E-1~E-53), respectively, have been isolated and identified in the genus Veratrum. Their pharmacological activities mainly focused on decreasing blood pressure, anti-platelet aggregation and anti-thrombosis, anti-inflammatory and analgesic, and antitumor effect. This paper classified and summarized the 184 kind of steroidal alkaloids from the Veratrum plants and their major pharmalogical activities in order to provide the scientific basis for the further development and utilization of active alkaloids.
Alkaloids/pharmacology*
;
Analgesics
;
Platelet Aggregation
;
Steroids/pharmacology*
;
Veratrum
2.Effect of Sonic Hedgehog Signal Pathway Inhibitor Jervine on Myelodysplastic Syndromes MUTZ-1 Cells.
Yu-Ting QIN ; Liu YAO ; Zhen YIN ; Huan WANG ; Shuang CHEN ; Tuerxun NILUPAR ; Yasen HALIDA ; Yang LIU ; Abulizi PATIGULI ; Ming JIANG ; Jian-Ping HAO
Journal of Experimental Hematology 2020;28(4):1298-1302
OBJECTIVE:
To study the effect of SMO inhibitor (Jervine) on proliferation, apoptosis and cell cycle of MDS cell line MUTZ-1, and its mechanism.
METHODS:
The effect of different concentrations Jervine on proliferation of MUTZ-1 cells was detected by CCK-8 method. Apoptosis and cell cycle of MUTZ-1 cells were detected by flow cytometry. Western blot was used to detect the changes of Shh signaling pathway effecting proteins BCL2 and CyclinD1. The expression levels of Smo and Gli1 gene were detected by real-time fluorescent quantitative polymerase chain reaction (RT-qPCR).
RESULTS:
Jervine inhibited MUTZ-1 cell proliferation in a concentration dependent manner (24 h, r=-0.977), the apoptosis rate of MUTZ-1 cells increased with the enhancement of concentration of Jervine in MUTZ-1 cells (P<0.001), the cell proportion of G phase increased and the cell number of S phase decreased with enhancement of concentration (P<0.001). The result of RT-qPCR and Western blot showed that the expression of Smo, Gli1 mRNA and BCL2, CyclinD1 proteins decreased (P<0.05).
CONCLUSION
SMO inhibitor can effectively inhibit the growth of MDS cell line MUTZ-1 improve the cell apoptosis and induce cell cycle arrest. Its action mechanism may be related with dowm-regulating the expression of BCL2 and CyclinD1.
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Hedgehog Proteins
;
Humans
;
Myelodysplastic Syndromes
;
Signal Transduction
;
Veratrum Alkaloids
3.Effect of Peimine on ERCC1 mRNA and LRP Expressions of A549/DDP Multidrug Resistance Cell Line.
Xiao-yong TANG ; Ying-xue TANG ; Peng XU ; Hai-yan ZHOU ; Li HAN
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(12):1490-1494
OBJECTIVETo explore the effect of peimine on excision repair cross-complementation 1 (ERCC1) mRNA and lung resistant protein (LRP) expressions in A549/cisplatin (DDP) multidrug resistance (MDR) cell line.
METHODSLung cancer A549/DDP cells were cultured in vitro.Cells at logarithmic growth phase were divided into 4 groups, i.e., the blank control group, the DDP group, the ligustrazine group (DDP+ligustrazine), the peimine group (DDP + peimine). After 48-h drug action, ERCC1 mRNA expression was detected by RT-PCR and LRP expression detected by cell immunofluorescence.
RESULTSThere was no statistical difference in expression levels of ERCC1 mRNA and LRP between the DDP group and the blank control group (P > 0.05). Compared with the DDP group, expression levels of ERCC1 mRNA and LRP obviously decreased in the ligustrazine group and the peimine group (P < 0.05). They were obviously lower in the peimine group than in the ligustrazine group (P < 0.05).
CONCLUSIONSPeimine could reverse MDR of A549/DDP cell line. Its mechanism might be associated with down-regulating ERCC1 mRNA and LRP expression levels.
Cell Line, Tumor ; Cevanes ; pharmacology ; Cisplatin ; DNA-Binding Proteins ; genetics ; Down-Regulation ; Drug Resistance, Multiple ; Drug Resistance, Neoplasm ; drug effects ; Endonucleases ; genetics ; Humans ; Low Density Lipoprotein Receptor-Related Protein-1 ; genetics ; Lung Neoplasms ; RNA, Messenger ; metabolism
4.Study on accumulation law of peimine in different Fritillaria thunbergii cultivar.
Yan-nan ZHANG ; Kang-cai WANG ; Xiao-qian ZHANG ; Zhi-wei CUI ; Qian WANG
China Journal of Chinese Materia Medica 2015;40(3):421-423
In order to study the accumulation of Fritillaria thunbergii cultivar, peimine content in Xiaye, Kuanye, Duozi and Xiaosanzi bulbs of different sizes and parts was determined by HPLC-ELSE. The results indicated that the peimine content varied significantly with the cultivar type, the size and part of bulb. The distribution laws of peimine were as follow: Xiaosanzi > Duozi > Xiaye > Kuanye, small-size bulb > big-size bulb, core bud > scale. The peimine yield per plant in Duozi was the highest.
Cevanes
;
analysis
;
Chromatography, High Pressure Liquid
;
Fritillaria
;
chemistry
;
growth & development
5.Comparison of Inhibitory Effects between Enalapril and Losartan on Adrenal Catecholamine Secretion.
Hyo Jeong LIM ; Young Youp KOH ; Dong Yoon LIM
Journal of the Korean Society of Hypertension 2014;20(2):51-67
BACKGROUND: The present study was attempted to compare enalapril, an angiotensin-converting enzyme inhibitor with losartan an angiotensin II (Ang II) receptor blocker in the inhibitory effects on the secretion of catecholamines (CA) from the perfused model of the rat adrenal gland. METHODS: The adrenal gland was isolated and perfused with Krebs-bicarbonate. CA was measured directly by using the fluorospectrophotometer. RESULTS: Both enalapril and losartan during perfusion into an adrenal vein for 90 minutes inhibited the CA release evoked by acetylcholine (ACh), 1.1-dimethyl-4-phenyl piperazinium (DMPP, a selective Nn agonist), high K+ (a direct membrane-depolarizer), 3-(m-chloro-phenyl-carbamoyl-oxy-2-butynyl-trimethyl ammonium (McN-A-343, a selective M1 agonist), and Ang II in a time-dependent manner. Also, in the presence of enalapril or losartan, the CA release evoked by veratridine (an activator of voltage-dependent Na+ channels), 6-dimethyl-3-nitro-4-(2-trifluoromethyl-phenyl)-pyridine-5-carboxylate (BAY-K-8644, an L-type Ca2+ channel activator), and cyclopiazonic acid (a cytoplasmic Ca2+-ATPase inhibitor) were significantly reduced. Based on the same concentration of enalapril and losartan, for the CA release evoked by ACh, high K+, DMPP, McN-A-343, Ang II, veratridine, BAY-K-8644, and cyclopiazonic acid, the following rank order of inhibitory potency was obtained: losartan > enalapril. In the simultaneous presence of enalapril and losartan, ACh-evoked CA secretion was more strongly inhibited compared with that of enalapril- or losartan-treated alone. CONCLUSIONS: Collectively, these results demonstrate that both enalapril and losartan inhibit the CA secretion evoked by activation of both cholinergic and Ang II type-1 receptors stimulation in the perfused rat adrenal medulla. When these two drugs were used in combination, their effects were enhanced, which may also be of clinical benefit. Based on concentration used in this study, the inhibitory effect of losartan on the CA secretion seems to be more potent than that of enalapril.
(4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride
;
3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester
;
Acetylcholine
;
Adrenal Glands
;
Adrenal Medulla
;
Ammonium Compounds
;
Angiotensin II
;
Animals
;
Catecholamines
;
Cytoplasm
;
Dimethylphenylpiperazinium Iodide
;
Enalapril*
;
Losartan*
;
Perfusion
;
Rats
;
Veins
;
Veratridine
6.Expression of sonic hedgehog signaling pathw ay and its inhibition by cyclopamine in rat liver with chronic fluorosis.
Lina ZHAO ; Yanni YU ; Chaonan DENG
Chinese Journal of Pathology 2014;43(12):814-819
OBJECTIVETo investigate the expression of sonic hedgehog (Shh) signaling pathway in liver fluorosis and to explore related mechanism.
METHODSTo establish animal model, 48 normal SD rats (aged 4-5 weeks) were randomly divided into 4 groups (12 each): control group, fluoriosis group, blocking group and blocking control group. After 6 months, the blocking group and blocking control group were injected intraperitoneally once every 2 days for 3 times with 10 mg/kg cyclopamine or dimethysulfoxide, respectively. Rats were sacrificed at the end of the experiment and the fluoride content in urine and liver function was determined. The expression of Shh and Gli1 protein and mRNA in hepatocytes was detected by immunohistochemistry and real-time fluorescence quantitative PCR, respectively.
RESULTSThe fluoride contents in the urine and the incidence of dental fluorosis increased in the fluoride and blocking control groups as compared with those in the control group, but decreased in the blocking group compared with those of the fluoride and blocking control group. Compared with the control group, the titers of aspartate transaminase (AST) and alanine transaminase (ALT) significantly increased, while the activity of total protein and albumin decreased in the fluoride and blocking control groups. Compared with the fluoride and blocking control groups, the activity of the ALT slightly declined and the AST, total protein and albumin slightly increased in the blocking group. Histologically, the cells were disorganized and swollen with cytoplasmic clearing (balloon cells), compared with the control group. The expression of Shh and Gli1 significantly increased in all but the control group. Compared with the fluoride and blocking control groups, the expression of Shh and Gli1 declined in the blocking group.
CONCLUSIONSThe overexpression and cyclopamine inhibition of the Shh signaling pathway are closely related to the content of fluoride in the liver. The Shh signaling pathway plays an important role in the pathogenesis of liver injury caused by fluorosis, suggesting a preventive and therapeutic target of the disease.
Alanine Transaminase ; analysis ; Animals ; Aspartate Aminotransferases ; analysis ; Dimethyl Sulfoxide ; pharmacology ; Disease Models, Animal ; Fluoride Poisoning ; drug therapy ; metabolism ; Fluorosis, Dental ; diagnosis ; Hedgehog Proteins ; antagonists & inhibitors ; metabolism ; Hepatocytes ; metabolism ; Kruppel-Like Transcription Factors ; metabolism ; Liver ; metabolism ; Liver Diseases ; drug therapy ; metabolism ; RNA, Messenger ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Signal Transduction ; drug effects ; Veratrum Alkaloids ; pharmacology ; Zinc Finger Protein GLI1
7.Effects of cyclopamine on the proliferation and apoptosis of LNCaP cells and expression of the PCA3 gene in human prostate cancer.
Zhi-Yong LÜ ; Ling-Dong LÜ ; M A LIANG-HONG
National Journal of Andrology 2014;20(3):213-217
OBJECTIVETo explore the effects of cyclopamine on the proliferation and apoptosis of LNCaP cells and the expression of the PCA3 gene in human prostate cancer in vitro.
METHODSLNCaP cells were treated with cyclopamine at the concentrations of 1, 5, 10 and 15 micromol/L for 24, 48 and 72 hours. The inhibitory effects of cyclopamine on the proliferation and apoptosis of the LNCaP cells were detected by MTT and flow cytometry respectively, the morphological changes of the cells observed by Hoechst 33258 staining, and the expression of the PCA3 gene determined by real-time fluorescence quantitative reverse transcriptase polymerase chain reaction (FQ-RT-PCR).
RESULTSCompared with the blank control group, cyclopamine significantly inhibited the proliferation of the LNCaP cells at 5, 10 and 15 micromol/L (P <0.01), reaching IC50 at 10 micro mol/L at 48 hours. The apoptosis rates of the LNCaP cells at 24, 48 and 72 hours were 37.21%, 57.38% and 57.98% in the 10 micromol/L group and 21. 16% , 71.31% and 72.90% in the 15 micro.mol/L group, significantly different from those in the control (P <0. 01). The cell apoptosis showed a rising trend with the increase of cyclopamine concentration and acting-time, while the expression of the PCA3 gene was decreasing with the increased concentration of cyclopamine, significantly lower than that of the blank control group (P <0.01) , and extremely low in the 10 micromo/L group
CONCLUSIONCyclopamine intervention at 10 and 15 micromol/L for 48 and 72 hours could significantly inhibit the at all time points. Proliferation and induce the apoptosis of LNCaP cells and reduce the expression level of PCA3.
Antigens, Neoplasm ; genetics ; Apoptosis ; drug effects ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Humans ; Male ; Prostatic Neoplasms ; genetics ; pathology ; Veratrum Alkaloids ; pharmacology
8.Inhibitory Effects of Ginsenoside-Rb2 on Nicotinic Stimulation-Evoked Catecholamine Secretion.
Hyo Jeong LIM ; Hyun Young LEE ; Dong Yoon LIM
The Korean Journal of Physiology and Pharmacology 2014;18(5):431-439
The aim of the present study was to investigate whether ginsenoside-Rb2 (Rb2) can affect the secretion of catecholamines (CA) in the perfused model of the rat adrenal medulla. Rb2 (3~30 microM), perfused into an adrenal vein for 90 min, inhibited ACh (5.32 mM)-evoked CA secretory response in a dose- and time-dependent fashion. Rb2 (10 microM) also time-dependently inhibited the CA secretion evoked by DMPP (100 microM, a selective neuronal nicotinic receptor agonist) and high K+ (56 mM, a direct membrane depolarizer). Rb2 itself did not affect basal CA secretion (data not shown). Also, in the presence of Rb2 (50 microg/mL), the secretory responses of CA evoked by veratridine (a selective Na+ channel activator (50 microM), Bay-K-8644 (an L-type dihydropyridine Ca2+ channel activator, 10 microM), and cyclopiazonic acid (a cytoplasmic Ca2+-ATPase inhibitor, 10 microM) were significantly reduced, respectively. Interestingly, in the simultaneous presence of Rb2 (10 microM) and L-NAME (an inhibitor of NO synthase, 30 microM), the inhibitory responses of Rb2 on ACh-evoked CA secretory response was considerably recovered to the extent of the corresponding control secretion compared with the inhibitory effect of Rb2-treatment alone. Practically, the level of NO released from adrenal medulla after the treatment of Rb2 (10 microM) was greatly elevated compared to the corresponding basal released level. Collectively, these results demonstrate that Rb2 inhibits the CA secretory responses evoked by nicotinic stimulation as well as by direct membrane-depolarization from the isolated perfused rat adrenal medulla. It seems that this inhibitory effect of Rb2 is mediated by inhibiting both the influx of Ca2+ and Na+ into the adrenomedullary chromaffin cells and also by suppressing the release of Ca2+ from the cytoplasmic calcium store, at least partly through the increased NO production due to the activation of nitric oxide synthase, which is relevant to neuronal nicotinic receptor blockade.
3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester
;
Adrenal Medulla
;
Animals
;
Calcium
;
Catecholamines
;
Chromaffin Cells
;
Cytoplasm
;
Dimethylphenylpiperazinium Iodide
;
Membranes
;
Neurons
;
NG-Nitroarginine Methyl Ester
;
Nitric Oxide Synthase
;
Rats
;
Receptors, Nicotinic
;
Veins
;
Veratridine
9.Influence of PD 123319 (AT2-Receptor Antagonist) on Catecholamine Secretion in the Perfused Rat Adrenal Medulla.
Soon Pyo HONG ; Bhandary BIDUR ; Mee Sung CHOI ; Young Hwan SEO ; Dong Yoon LIM
Journal of the Korean Society of Hypertension 2013;19(1):23-38
BACKGROUND: The aim of this study was to examine whether PD 123319 (an angiotensin II type 2 [AT2] receptor antagonist) can influence the release of catecholamines (CA) from the perfused model of the rat adrenal medulla. METHODS: The adrenal gland was isolated by the modification of Wakade method, and perfused with normal Krebs-bicarbonate solution. The content of CA was measured using the fluorospectrophotometer. RESULTS: During perfusion of PD 123319 (range, 5 to 50 nM) into an adrenal vein for 90 minutes the CA secretory responses evoked by acetylcholine (ACh), high K+, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), and McN-A-343 was dose- and time-dependently inhibited. Furthermore, loading with PD 123319 for 90 minutes also markedly inhibited the CA secretory responses evoked by 4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoro-methyl-phenyl)-pyridine-5-carboxylate (Bay-K-8644), cyclopiazonic acid, veratridine, and angiotensin II (Ang II). PD 123319 did not affect basal CA output. Simultaneous perfusion of PD 123319 and CGP 42112 perfused into an adrenal vein for 90 minutes rather more potently inhibited the CA seretory responses evoked by Ach, high K+, DMPP, Bay-K-8644, veratridine, and Ang II compared to the inhibitory effect by PD123319-treated alone. CONCLUSIONS: Taken together, these results show that PD 123319 inhibits the CA secretion evoked by both cholinergic and Ang II receptor stimulation from the perfused rat adrenal medulla. This inhibitory effect of PD 123319 seems to be exerted by blocking the influx of both Na+ and Ca2+ through their voltage-dependent channels into the rat adrenomedullary chromaffin cells as well as by reducing the Ca2+ release from its cytoplasmic calcium store, which may be relevant to AT2 receptor blockade. Based on these present data, it is thought that PD 123319 has different activity from previously known AT2 antagonist activity in the perfused adrenal medulla, and that AT2 receptors may be involved in the rat adrenomedullary CA secretion.
(4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride
;
3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester
;
Acetylcholine
;
Adrenal Glands
;
Adrenal Medulla
;
Angiotensin II
;
Angiotensin II Type 2 Receptor Blockers
;
Animals
;
Calcium
;
Catecholamines
;
Chromaffin Cells
;
Cytoplasm
;
Dimethylphenylpiperazinium Iodide
;
Imidazoles
;
Indoles
;
Oligopeptides
;
Perfusion
;
Pyridines
;
Rats
;
Veins
;
Veratridine
10.Rat intestinal absorption trait of peimine and peiminine in Thunberg fritillary bulb extract.
Zhi-Yu GUAN ; Li-Hua ZHANG ; Li-Hua CHEN ; Wei-Feng ZHU ; Hong-Ning LIU
Acta Pharmaceutica Sinica 2013;48(12):1836-1843
To study the in situ intestinal absorption kinetics and compatibility influence of peimine and peiminine in rats, the absorption of peimine and peiminine in small intestine (duodenum, jejunum and ileum) and colon of rats was investigated using in situ single-pass perfusion method and the drug content was measured by HPLC-ELSD. Perfusion rate, pH, concentration of drug, gender and bile duct ligation can significantly affect the absorption of peimine and peiminine, the Ka, and Papp values in the condition of pH 6.8 and pH 7.4 had significant difference (P<0.01), as drug concentration irlcreased, the absorption parameters of peimine and peiminine decreased, Ka and Papp between low concentrations and middle concentrations was significant difference (P<0.01). Verapamil can not affect Ka and Papp of peimine and peiminine which are in the extract (P> 0.05). Bitter almonds and licorice can significantly reduce the absorption of peimine and peiminine with the usual dose (P<0.01), extracted separately and together had no significant difference on Ka and Papp (P> 0.05). Experimental results show that the absorption features of peimine and peiminine are basically the same, both of them could be absorbed at all segments of the intestine in rats and had no special absorption window, and with significant differences between male and female individuals. The absorption of peimine and peiminine complies with the active transport and facilitated diffusion in the general intestinal segments. Bitter almond and licorice can reduce the intestinal absorption rate ofpeimine and peiminine.
Animals
;
Cevanes
;
administration & dosage
;
isolation & purification
;
pharmacokinetics
;
Colon
;
metabolism
;
Drugs, Chinese Herbal
;
isolation & purification
;
pharmacology
;
Female
;
Fritillaria
;
chemistry
;
Glycyrrhiza
;
chemistry
;
Glycyrrhizic Acid
;
isolation & purification
;
pharmacology
;
Intestinal Absorption
;
drug effects
;
Intestine, Small
;
metabolism
;
Male
;
Perfusion
;
Plant Roots
;
chemistry
;
Plants, Medicinal
;
chemistry
;
Prunus dulcis
;
chemistry
;
Rats
;
Rats, Sprague-Dawley
;
Sex Factors

Result Analysis
Print
Save
E-mail