1.Effect and mechanism of Jiming Powder on myocardial fibrosis in mice with myocardial infarction.
Xin-Yi FAN ; Xiao-Qi WEI ; Yun-Yang ZHANG ; Hai-Yin PU ; Fang-He LI ; Kuo GAO ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2023;48(21):5838-5850
Jiming Powder is a traditional ancient prescription with good therapeutic effect in the treatment of heart failure, but its mechanism lacks further exploration. In this study, a mouse model of coronary artery ligation was used to evaluate the effect and mechanism of Jiming Powder on myocardial fibrosis in mice with myocardial infarction. The study constructed a mouse model of heart failure after myocardial infarction using the method of left anterior descending coronary artery ligation. The efficacy of Jiming Powder was evaluated from multiple angles, including ultrasound imaging, hematoxylin-eosin(HE) staining, Masson staining, Sirius Red staining, and serum myocardial enzyme spectrum detection. Western blot analysis was performed to detect key proteins involved in ventricular remodeling, including transforming growth factor-β1(TGF-β1), α-smooth muscle actin(α-SMA), wingless-type MMTV integration site family member 3a(Wnt3a), β-catenin, matrix metallopeptidase 2(MMP2), matrix metallopeptidase 3(MMP3), TIMP metallopeptidase inhibitor 1(TIMP1), and TIMP metallopeptidase inhibitor 2(TIMP2). The results showed that compared with the model group, the high and low-dose Jiming Powder significantly reduced the left ventricular internal diameter in systole(LVID;s) and diastole(LVID;d), increased the left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), effectively improved cardiac function in mice after myocardial infarction, and effectively reduced the levels of myocardial injury markers such as creatine kinase(CK), creatine kinase isoenzyme(CK-MB), and lactic dehydrogenase(LDH), thus protecting ischemic myocardium. HE staining showed that Jiming Powder could attenuate myocardial inflammatory cell infiltration after myocardial infarction. Masson and Sirius Red staining demonstrated that Jiming Powder effectively inhibited myocardial fibrosis, reduced the collagen Ⅰ/Ⅲ ratio in myocardial tissues, and improved collagen remodeling after myocardial infarction. Western blot results showed that Jiming Powder reduced the expression of TGF-β1, α-SMA, Wnt3a, and β-catenin, decreased the levels of MMP2, MMP3, and TIMP2, and increased the level of TIMP1, suggesting its role in inhibiting cardiac fibroblast transformation, reducing extracellular matrix metabolism in myocardial cells, and lowering collagen Ⅰ and α-SMA content, thus exerting an anti-myocardial fibrosis effect after myocardial infarction. This study revealed the role of Jiming Powder in improving ventricular remodeling and treating myocardial infarction, laying the foundation for further research on the pharmacological effect of Jiming Powder.
Mice
;
Animals
;
Transforming Growth Factor beta1/metabolism*
;
Matrix Metalloproteinase 2/metabolism*
;
beta Catenin/metabolism*
;
Matrix Metalloproteinase 3/therapeutic use*
;
Powders
;
Ventricular Remodeling
;
Stroke Volume
;
Ventricular Function, Left
;
Myocardial Infarction/drug therapy*
;
Myocardium/pathology*
;
Heart Failure/metabolism*
;
Collagen/metabolism*
;
Creatine Kinase
;
Fibrosis
2.Guanxin V Relieves Ventricular Remodeling by Inhibiting Inflammation: Implication from Virtual Screening, Systematic Pharmacology, Molecular Docking, and Experimental Validation.
Bo LIANG ; Xiao-Xiao ZHANG ; Ning GU
Chinese journal of integrative medicine 2023;29(12):1077-1086
OBJECTIVE:
To reveal the anti-inflammatory mechanism of Guanxin V, which is prescribed for ventricular remodeling in clinical practice.
METHODS:
Guanxin V-, ventricular remodeling-, and inflammation-related targets were obtained through an integrated strategy of virtual screening and systematic pharmacology, and then the shared targets were visualised with a Venn diagram. Guanxin V network and the protein-protein interaction network were drawn, and enrichment analysis was conducted. Finally, the main results obtained from the integrated strategy were validated by molecular docking and in vivo experiments.
RESULTS:
A total of 251, 11,425, and 15,246 Guanxin V-, ventricular remodeling-, and inflammation-related targets were acquired, respectively. Then, 211 shared targets were considered to contribute to the mechanism of ventricular remodeling treated by Guanxin V. Guanxin network and the protein-protein interaction network were drawn, and enrichment analysis showed some cardiovascular-related biological processes and signaling pathways. Molecular docking revealed that the Guanxin V-derived compounds could align with key targets. Final in vivo experiments proved that Guanxin V reverses ventricular remodeling by inhibiting inflammation.
CONCLUSION
Guanxin V relieves ventricular remodeling by regulating inflammation, which provides new ideas for the anti-ventricular remodeling mechanism of Guanxin V.
Humans
;
Molecular Docking Simulation
;
Network Pharmacology
;
Ventricular Remodeling
;
Inflammation/drug therapy*
3.Effects of Compound Danshen Dripping Pills on Ventricular Remodeling and Cardiac Function after Acute Anterior Wall ST-Segment Elevation Myocardial Infarction (CODE-AAMI): Protocol for a Randomized Placebo-Controlled Trial.
Yu-Jie WU ; Bo DENG ; Si-Bo WANG ; Rui QIAO ; Xi-Wen ZHANG ; Yuan LU ; Li WANG ; Shun-Zhong GU ; Yu-Qing ZHANG ; Kai-Qiao LI ; Zong-Liang YU ; Li-Xing WU ; Sheng-Biao ZHAO ; Shuang-Lin ZHOU ; Yang YANG ; Lian-Sheng WANG
Chinese journal of integrative medicine 2023;29(12):1059-1065
BACKGROUND:
Ventricular remodeling after acute anterior wall ST-segment elevation myocardial infarction (AAMI) is an important factor in occurrence of heart failure which additionally results in poor prognosis. Therefore, the treatment of ventricular remodeling needs to be further optimized. Compound Danshen Dripping Pills (CDDP), a traditional Chinese medicine, exerts a protective effect on microcirculatory disturbance caused by ischemia-reperfusion injury and attenuates ventricular remodeling after myocardial infarction.
OBJECTIVE:
This study is designed to evaluate the efficacy and safety of CDDP in improving ventricular remodeling and cardiac function after AAMI on a larger scale.
METHODS:
This study is a multi-center, randomized, double-blind, placebo-controlled, parallel-group clinical trial. The total of 268 patients with AAMI after primary percutaneous coronary intervention (pPCI) will be randomly assigned 1:1 to the CDDP group (n=134) and control group (n=134) with a follow-up of 48 weeks. Both groups will be treated with standard therapy of ST-segment elevation myocardial infarction (STEMI), with the CDDP group administrating 20 tablets of CDDP before pPCI and 10 tablets 3 times daily after pPCI, and the control group treated with a placebo simultaneously. The primary endpoint is 48-week echocardiographic outcomes including left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume index (LVEDVI), and left ventricular end-systolic volume index (LVESVI). The secondary endpoint includes the change in N terminal pro-B-type natriuretic peptide (NT-proBNP) level, arrhythmias, and cardiovascular events (death, cardiac arrest, or cardiopulmonary resuscitation, rehospitalization due to heart failure or angina pectoris, deterioration of cardiac function, and stroke). Investigators and patients are both blinded to the allocated treatment.
DISCUSSION
This prospective study will investigate the efficacy and safety of CDDP in improving ventricular remodeling and cardiac function in patients undergoing pPCI for a first AAMI. Patients in the CDDP group will be compared with those in the control group. If certified to be effective, CDDP treatment in AAMI will probably be advised on a larger scale. (Trial registration No. NCT05000411).
Humans
;
ST Elevation Myocardial Infarction/therapy*
;
Stroke Volume
;
Ventricular Remodeling
;
Prospective Studies
;
Microcirculation
;
Ventricular Function, Left
;
Myocardial Infarction/etiology*
;
Treatment Outcome
;
Percutaneous Coronary Intervention/adverse effects*
;
Heart Failure/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Randomized Controlled Trials as Topic
;
Multicenter Studies as Topic
4.Inhibitor of growth protein-2 silencing alleviates angiotensin Ⅱ-induced cardiac remodeling in mice by reducing p53 acetylation.
Zhengwang LIU ; Xiaotang QIU ; Hua YANG ; Xiaocui WU ; Wenjing YE
Journal of Southern Medical University 2023;43(7):1127-1135
OBJECTIVE:
To investigate the effect of inhibitor of growth protein-2 (Ing2) silencing on angiotensin Ⅱ (AngⅡ)-induced cardiac remodeling in mice and explore the underlying mechanism.
METHODS:
An adenoviral vector carrying Ing2 shRNA or empty adenoviral vector was injected into the tail vein of mice, followed 48 h later by infusion of 1000 ng · kg-1 · min-1 Ang Ⅱ or saline using a mini-osmotic pump for 42 consecutive days. Transthoracic echocardiography was used to assess cardiac geometry and function and the level of cardiac hypertrophy in the mice. Masson and WGA staining were used to detect myocardial fibrosis and cross-sectional area of cardiomyocytes, and myocardial cell apoptosis was detected with TUNEL assay. Western blotting was performed to detect myocardial expressions of cleaved caspase 3, ING2, collagen Ⅰ, Ac-p53(Lys382) and p-p53 (Ser15); Ing2 mRNA expression was detected using real-time PCR. Mitochondrial biogenesis, as measured by mitochondrial ROS content, ATP content, citrate synthase activity and calcium storage, was determined using commercial assay kits.
RESULTS:
The expression levels of Ing2 mRNA and protein were significantly higher in the mice with chronic Ang Ⅱ infusion than in saline-infused mice. Chronic infusion of AngⅡ significantly increased the left ventricular end-systolic diameter (LVESD) and left ventricular end-diastolic diameter (LVEDD) and reduced left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) in the mice. Ing2 silencing obviously alleviated AngⅡ-induced cardiac function decline, as shown by decreased LVEDD and LVESD and increased LVEF and LVFS, improved myocardial mitochondrial damage and myocardial hypertrophy and fibrosis, and inhibited cardiomyocyte apoptosis. Chronic AngⅡ infusion significantly increased myocardial expression levels of Ac-p53(Lys382) and p-p53(Ser15) in the mice, and Ing2 silencing prior to AngⅡ infusion lessened AngⅡ- induced increase of Ac-p53(Lys382) without affecting p53 (ser15) expression.
CONCLUSION
Ing2 silencing can inhibit AngⅡ-induced cardiac remodeling and dysfunction in mice by reducing p53 acetylation.
Animals
;
Mice
;
Angiotensin II
;
Tumor Suppressor Protein p53
;
Acetylation
;
Stroke Volume
;
Ventricular Remodeling
;
Ventricular Function, Left
;
Myocytes, Cardiac
5.Erythropoietin promotes myocardial infarction repair in mice by improving the function of Sca-1+ stem cells.
Lin ZUO ; Duan-Duan LI ; Xiu-Xia MA ; Shan-Hui SHI ; Ding-Chao LYU ; Jing SHEN ; Wei-Fang ZHANG ; Er-He GAO ; Ji-Min CAO
Acta Physiologica Sinica 2023;75(1):36-48
Myocardial infarction (MI) is one of the leading causes of death in the world. With the improvement of clinical therapy, the mortality of acute MI has been significantly reduced. However, as for the long-term impact of MI on cardiac remodeling and cardiac function, there is no effective prevention and treatment measures. Erythropoietin (EPO), a glycoprotein cytokine essential to hematopoiesis, has anti-apoptotic and pro-angiogenetic effects. Studies have shown that EPO plays a protective role in cardiomyocytes in cardiovascular diseases, such as cardiac ischemia injury and heart failure. EPO has been demonstrated to protect ischemic myocardium and improve MI repair by promoting the activation of cardiac progenitor cells (CPCs). This study aimed to investigate whether EPO can promote MI repair by enhancing the activity of stem cell antigen 1 positive stem cells (Sca-1+ SCs). Darbepoetin alpha (a long-acting EPO analog, EPOanlg) was injected into the border zone of MI in adult mice. Infarct size, cardiac remodeling and performance, cardiomyocyte apoptosis and microvessel density were measured. Lin- Sca-1+ SCs were isolated from neonatal and adult mouse hearts by magnetic sorting technology, and were used to identify the colony forming ability and the effect of EPO, respectively. The results showed that, compared to MI alone, EPOanlg reduced the infarct percentage, cardiomyocyte apoptosis ratio and left ventricular (LV) chamber dilatation, improved cardiac performance, and increased the numbers of coronary microvessels in vivo. In vitro, EPO increased the proliferation, migration and clone formation of Lin- Sca-1+ SCs likely via the EPO receptor and downstream STAT-5/p38 MAPK signaling pathways. These results suggest that EPO participates in the repair process of MI by activating Sca-1+ SCs.
Animals
;
Mice
;
Ventricular Remodeling
;
Erythropoietin
;
Myocardial Infarction
;
Heart
;
Stem Cells
6.Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis.
Kai JIANG ; Yue XU ; Dandan WANG ; Feng CHEN ; Zizhuo TU ; Jie QIAN ; Sheng XU ; Yixiang XU ; John HWA ; Jian LI ; Hongcai SHANG ; Yaozu XIANG
Protein & Cell 2022;13(5):336-359
Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce cardiovascular mortality in patients with diabetes mellitus but the protective mechanism remains elusive. Here we demonstrated that the SGLT2 inhibitor, Empagliflozin (EMPA), suppresses cardiomyocytes autosis (autophagic cell death) to confer cardioprotective effects. Using myocardial infarction (MI) mouse models with and without diabetes mellitus, EMPA treatment significantly reduced infarct size, and myocardial fibrosis, thereby leading to improved cardiac function and survival. In the context of ischemia and nutritional glucose deprivation where autosis is already highly stimulated, EMPA directly inhibits the activity of the Na+/H+ exchanger 1 (NHE1) in the cardiomyocytes to regulate excessive autophagy. Knockdown of NHE1 significantly rescued glucose deprivation-induced autosis. In contrast, overexpression of NHE1 aggravated the cardiomyocytes death in response to starvation, which was effectively rescued by EMPA treatment. Furthermore, in vitro and in vivo analysis of NHE1 and Beclin 1 knockout mice validated that EMPA's cardioprotective effects are at least in part through downregulation of autophagic flux. These findings provide new insights for drug development, specifically targeting NHE1 and autosis for ventricular remodeling and heart failure after MI in both diabetic and non-diabetic patients.
Animals
;
Diabetes Mellitus
;
Diabetes Mellitus, Type 2/drug therapy*
;
Glucose
;
Humans
;
Mice
;
Myocardial Infarction/metabolism*
;
Sodium-Glucose Transporter 2 Inhibitors/therapeutic use*
;
Ventricular Remodeling
7.Impact of bicuspid aortic valve or tricuspid aortic valve on hemodynamics and left ventricular reverse remodeling in patients after transcatheter aortic valve replacement.
Jia Qi ZHANG ; Cheng Wei CHI ; Wei Long ZHAO ; Qing Tao MENG ; Li Dan WANG ; Ji Yi LIU ; Feng Zhi SUN ; Shu Long ZHANG ; Ji Hong LIU
Chinese Journal of Cardiology 2022;50(12):1193-1200
Objective: To compare the impact of bicuspid aortic valve (BAV) or tricuspid aortic valve (TAV) on hemodynamics and left ventricular reverse remodeling after transcatheter aortic valve replacement (TAVR). Methods: We retrospectively analyzed the clinical data of patients who underwent TAVR in our hospital from January 2019 to March 2021. Patients were divided into BAV group and TAV group according to aortic contrast-enhanced CT. Each patient was followed up by N-terminal pro B-type natriuretic peptide (NT-proBNP) and echocardiography at four time points, namely before TAVR, 24 hours, 1 month and 6 months after TAVR. Echocardiographic data, including mean pressure gradient (MPG), aortic valve area (AVA), left ventricular ejection fraction (LVEF), left ventricle mass (LVM) and LV mass index (LVMi) were evaluated. Results: A total of 41 patients were included. The age was (75.0±8.6) years, and male patients accounted for 53.7%. There were 19 BAV patients and 22 TAV patients in this cohort. All patients undergoing TAVR using a self-expandable prosthesis Venus-A valve. MPG was (54.16±21.22) mmHg(1 mmHg=0.133 kPa) before TAVR, (21.11±9.04) mmHg at 24 hours after TAVR, (18.84±7.37) mmHg at 1 month after TAVR, (17.68±6.04) mmHg at 6 months after TAVR in BAV group. LVEF was (50.42±13.30)% before TAVR, (53.84±10.59)% at 24 hours after TAVR, (55.68±8.71)% at 1 month after TAVR and (57.42±7.78)% at 6 months after TAVR in BAV group. MPG and LVEF substantially improved at each time point after operation, and the difference was statistically significant (all P<0.05) in BAV group. MPG in TAV group improved at each time point after operation, and the difference was statistically significant (all P<0.05). LVMi was (164.13±49.53), (156.37±39.11), (146.65±38.84) and (134.13±39.83) g/m2 at the 4 time points and the value was significantly reduced at 1 and 6 months post TAVR compared to preoperative level(both P<0.05). LVEF in the TAV group remained unchanged at 24 hours after operation, but it was improved at 1 month and 6 months after operation, and the difference was statistically significant (all P<0.05). LVMi in TAV group substantially improved at each time point after operation, and the difference was statistically significant (all P<0.05). NT-proBNP in both two groups improved after operation, at 1 month and 6 months after operation, and the difference was statistically significant (all P<0.05). MPG in TAV group improved better than in BAV group during the postoperative follow-up (24 hours after TAVR: (11.68±5.09) mmHg vs. (21.11±9.04) mmHg, P<0.001, 1 month after TAVR: (10.82±3.71) mmHg vs. (18.84±7.37) mmHg, P<0.001, 6 months after TAVR: (12.36±4.42) mmHg vs. (17.68±6.04) mmHg, P=0.003). There was no significant difference in NT-proBNP between BAV group and TAV group at each time point after operation (all P>0.05). There was no significant difference in paravalvular regurgitation and second prosthesis implantation between the two groups (all P>0.05). Conclusions: AS patients with BAV or TAV experience hemodynamic improvement and obvious left ventricular reverse remodeling after TAVR, and the therapeutic effects of TAVR are similar between BAV and TAV AS patients in the short-term post TAVR.
Humans
;
Male
;
Aged
;
Aged, 80 and over
;
Transcatheter Aortic Valve Replacement
;
Aortic Valve/surgery*
;
Bicuspid Aortic Valve Disease/surgery*
;
Aortic Valve Stenosis/surgery*
;
Retrospective Studies
;
Stroke Volume
;
Heart Valve Diseases
;
Ventricular Function, Left
;
Treatment Outcome
;
Ventricular Remodeling
;
Hemodynamics
8.The value of CMR high-risk attributes in predicting ventricular remodeling in ST-segment-elevation myocardial infarction patients with mildly reduced or preserved ejection fraction.
Qian GUO ; Xiao WANG ; Rui Feng GUO ; Ying Ying GUO ; Yan YAN ; Wei GONG ; Wen ZHENG ; Hui WANG ; Lei XU ; Hui AI ; Bin QUE ; Shao Ping NIE
Chinese Journal of Cardiology 2022;50(9):864-872
Objective: To evaluate the predictive value of a multiparametric cardiac magnetic resonance (CMR) approach for ventricular remodeling in ST-segment-elevation myocardial infarction (STEMI) patients with mildly reduced or preserved left ventricular ejection fraction (LVEF). Methods: This study is a prospective cohort study. STEMI patients with acute LVEF>40% after primary percutaneous coronary intervention (PCI) in Beijing Anzhen Hospital from October 2019 to September 2021 were enrolled. All patients received acute (3-7 days) and follow-up (3 months) CMR post-PCI. According to absence or presence of ventricular remodeling, patients were divided into ventricular remodeling group and non-ventricular remodeling group. Basic clinical characteristics and CMR indicators were analyzed and compared between the two groups. Logistic regression and receiver operating characteristic (ROC) curves were used to explore the predictive performance of CMR high-risk attributes for ventricular remodeling in STEMI patients with mildly reduced or preserved LVEF. The predictive value of combining multiple high-risk characteristics of CMR for ventricular remodeling was analyzed and compared with the traditional clinical risk factor model. Results: A total of 123 STEMI patients were enrolled (aged (57.1±11.1) years, 102 (82.9%) males). There were 97 cases (78.9%) patients in the non-ventricular remodeling group and 26 cases (21.1%) in the ventricular remodeling group. After adjustment for clinical risk factors, stroke volume<51.6 ml, global circumferential strain>-13.7%, infarct size>39.2%, microvascular obstruction>0.5%, and myocardial salvage index<43.9 were independently associated with ventricular remodeling in STEMI patients with mildly reduced or preserved LVEF. The incidence of ventricular remodeling increased with the increasing number of CMR high-risk attributes (P<0.01). The number of CMR high-risk attributes ≥3 was an independent predictor of adverse remodeling (adjusted OR=5.95, 95 CI%: 2.25-15.72, P<0.01) in STEMI patients with mildly reduced or preserved LVEF. Furthermore, the number of CMR high-risk attributes had incremental predictive value over baseline clinical risk factors (area under curve: 0.843 vs. 0.696, P<0.01). Conclusions: In STEMI patients with mild reduced or preserved LVEF, 5 CMR characteristics are associated with ventricular remodeling. The combination of ≥3 CMR high-risk characteristics is an independent predictor of ventricular remodeling, which has incremental predictive value beyond traditional risk factors in this patient cohort.
Female
;
Humans
;
Magnetic Resonance Imaging, Cine
;
Magnetic Resonance Spectroscopy
;
Male
;
Percutaneous Coronary Intervention
;
Prospective Studies
;
ST Elevation Myocardial Infarction/diagnostic imaging*
;
Stroke Volume
;
Ventricular Function, Left
;
Ventricular Remodeling
9.Sacubitril/valsartan attenuates left ventricular remodeling and improve cardiac function by upregulating apelin/APJ pathway in rats with heart failure.
Hong Zhi LIU ; Chuan Yu GAO ; Fang YUAN ; Yu XU ; Huan TIAN ; Su Qin WANG ; Peng Fei ZHANG ; Ya Nan SHI ; Jing Jing WEI
Chinese Journal of Cardiology 2022;50(7):690-697
Objective: To investigate the effect and mechanism of sacubitril/valsartan on left ventricular remodeling and cardiac function in rats with heart failure. Methods: A total of 46 SPF-grade male Wistar rats weighed 300-350 g were acclimatized to the laboratory for 7 days. Rats were then divided into 4 groups: the heart failure group (n=12, intraperitoneal injection of adriamycin hydrochloride 2.5 mg/kg once a week for 6 consecutive weeks, establishing a model of heart failure); heart failure+sacubitril/valsartan group (treatment group, n=12, intragastric administration with sacubitril/valsartan 1 week before the first injection of adriamycin, at a dose of 60 mg·kg-1·d-1 for 7 weeks); heart failure+sacubitril/valsartan+APJ antagonist F13A group (F13A group, n=12, adriamycin and sacubitril/valsartan, intraperitoneal injection of 100 μg·kg-1·d-1 APJ antagonist F13A for 7 weeks) and control group (n=10, intraperitoneal injection of equal volume of normal saline). One week after the last injection of adriamycin or saline, transthoracic echocardiography was performed to detect the cardiac structure and function, and then the rats were executed, blood and left ventricular specimens were obtained for further analysis. Hematoxylin-eosin staining and Masson trichrome staining were performed to analyze the left ventricular pathological change and myocardial fibrosis. TUNEL staining was performed to detect cardiomyocyte apoptosis. mRNA expression of left ventricular myocardial apelin and APJ was detected by RT-qRCR. ELISA was performed to detect plasma apelin-12 concentration. The protein expression of left ventricular myocardial apelin and APJ was detected by Western blot. Results: Seven rats survived in the heart failure group, 10 in the treatment group, and 8 in the F13A group. Echocardiography showed that the left ventricular end-diastolic diameter (LVEDD) and the left ventricular end-systolic diameter (LVESD) were higher (both P<0.05), while the left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) were lower in the heart failure group than in the control group (both P<0.05). Compared with the heart failure group, rats in the treatment group were featured with lower LVEDD and LVESD (both P<0.05), higher LVEF and LVFS (both P<0.05), these beneficial effects were reversed in rats assigned to F13A group (all P<0.05 vs. treatment group). The results of HE staining showed that the cardiomyocytes of rats in the control group were arranged neatly and densely structured, the cardiomyocytes in the heart failure group were arranged in disorder, distorted and the gap between cells was increased, the cardiomyocytes in the treatment group were slightly neat and dense, and cardiomyocytes in the F13A group were featured similarly as the heart failure group. Masson staining showed that there were small amount of collagen fibers in the left ventricular myocardial interstitium of the control group, while left ventricular myocardial fibrosis was significantly increased, and collagen volume fraction (CVF) was significantly higher in the heart failure group than that of the control group (P<0.05). Compared with the heart failure group, the left ventricular myocardial fibrosis and the CVF were reduced in the treatment group (both P<0.05), these effects were reversed in the F13A group (all P<0.05 vs. treatment group). TUNEL staining showed that the apoptosis index (AI) of cardiomyocytes in rats was higher in the heart failure group compared with the control group (P<0.05), which was reduced in the treatment group (P<0.05 vs. heart failure group), this effect again was reversed in the F13A group (P<0.05 vs. treatment group). The results of RT-qPCR and Western blot showed that the mRNA and protein levels of apelin and APJ in left ventricular myocardial tissue of rats were downregulated in heart failure group (all P<0.05) compared with the control group. Compared with the heart failure group, the mRNA and protein levels of apelin and APJ were upregulated in the treatment group (all P<0.05), these effects were reversed in the F13A group (all P<0.05 vs. treatment group). ELISA test showed that the plasma apelin concentration of rats was lower in the heart failure group compared with the control group (P<0.05); compared with the heart failure group, the plasma apelin concentration of rats was higher in the treatment group (P<0.05), this effect was reversed in the F13A group (P<0.05 vs. treatment group). Conclusion: Sacubitril/valsartan can partially reverse left ventricular remodeling and improve cardiac function in rats with heart failure through modulating Apelin/APJ pathways.
Aminobutyrates/pharmacology*
;
Animals
;
Apelin/metabolism*
;
Biphenyl Compounds
;
Collagen/metabolism*
;
Doxorubicin/pharmacology*
;
Fibrosis
;
Heart Failure/pathology*
;
Male
;
Myocytes, Cardiac/pathology*
;
RNA, Messenger/metabolism*
;
Rats
;
Rats, Wistar
;
Valsartan/pharmacology*
;
Ventricular Function, Left/drug effects*
;
Ventricular Remodeling
10.Challenges and opportunities in improving left ventricular remodelling and clinical outcome following surgical and trans-catheter aortic valve replacement.
Xu Yu JIN ; Mario PETROU ; Jiang Ting HU ; Ed D NICOL ; John R PEPPER
Frontiers of Medicine 2021;15(3):416-437
Over the last half century, surgical aortic valve replacement (SAVR) has evolved to offer a durable and efficient valve haemodynamically, with low procedural complications that allows favourable remodelling of left ventricular (LV) structure and function. The latter has become more challenging among elderly patients, particularly following trans-catheter aortic valve implantation (TAVI). Precise understanding of myocardial adaptation to pressure and volume overloading and its responses to valve surgery requires comprehensive assessments from aortic valve energy loss, valvular-vascular impedance to myocardial activation, force-velocity relationship, and myocardial strain. LV hypertrophy and myocardial fibrosis remains as the structural and morphological focus in this endeavour. Early intervention in asymptomatic aortic stenosis or regurgitation along with individualised management of hypertension and atrial fibrillation is likely to improve patient outcome. Physiological pacing via the His-Purkinje system for conduction abnormalities, further reduction in para-valvular aortic regurgitation along with therapy of angiotensin receptor blockade will improve patient outcome by facilitating hypertrophy regression, LV coordinate contraction, and global vascular function. TAVI leaflet thromboses require anticoagulation while impaired access to coronary ostia risks future TAVI-in-TAVI or coronary interventions. Until comparable long-term durability and the resolution of TAVI related complications become available, SAVR remains the first choice for lower risk younger patients.
Aged
;
Aortic Valve/surgery*
;
Aortic Valve Stenosis/surgery*
;
Catheters
;
Humans
;
Transcatheter Aortic Valve Replacement
;
Treatment Outcome
;
Ventricular Remodeling

Result Analysis
Print
Save
E-mail