1.Mechanical ventilator acquisition strategy in a large private tertiary medical center using Monte Carlo Simulation.
Joven Jeremius Q. TANCHUCO ; Fernando B. GARCIA
Acta Medica Philippina 2025;59(3):57-69
BACKGROUND AND OBJECTIVES
Mechanical ventilators are essential albeit expensive equipment to support critically ill patients who have gone into respiratory failure. Adequate numbers should always be available to ensure that a hospital provides the optimal care to patients but the number of patients requiring them at any one time is unpredictable. Finding therefore the best balance in providing adequate ventilator numbers while ensuring the financial sustainability of a hospital is important.
METHODSA quantitative method using Monte Carlo Simulation was used to identify the optimal strategy for acquiring ventilators in a large private tertiary medical center in Metro Manila. The number of ventilators needed to provide ventilator needs 90% of the days per month (27/30) was determined using historical data on ventilator use over a period of four years. Four acquisition strategies were investigated: three ownership strategies (outright purchase, installment, and staggered purchase) and a rental strategy. Return on Investment (ROI), Internal Rate of Return (IRR), Modified Internal Rate of Return (MIRR), Net Present Value (NPV), and Payback period (or Breakeven Point) for each strategy were determined to help recommend the best strategy. A qualitative survey was also conducted among doctors, nurses, and respiratory therapists who were taking care of patients hooked to ventilators to find out their experiences comparing hospital-owned and rental ventilators.
RESULTSIt was found that a total of 11 respirators were needed by the hospital to ensure that enough respirators were available for its patients at least 90% of the days in any month based on the previous four-year period. This meant acquiring three more ventilators as the hospital already owned eight. Among the strategies studied, projected over a 10-year period, the installment strategy (50% down payment with 0% interest over a 5-year period) proved to be the most financially advantageous with ROI = 9.36 times, IRR = 97% per year, MIRR = 26% per year, NPV = ₱39,324,297.60 and Payback period = 1.03 years). A more realistic installment strategy with 15% (paid quarterly or annually) and 25% annual interest rates were also explored with their financial parameters quite like but not as good as the 0% interest. The outright purchase of three ventilators came in lower (ROI = 4.53 times, IRR = 55% per year, MIRR = 19% per year, NPV = ₱38,064,297.60 and Payback period = 1.81 years) followed last by staggered purchase with ROI = 3.56 times, IRR = 64% per year, MIRR = 28% per year, NPV = ₱29,905,438.08, and payback period of 2.06 years. As there was no investment needed for the rental strategy, the only financial parameter available for it is the NPV which came out as ₱21,234,057.60.
The qualitative part of the study showed that most of the healthcare workers involved in the care of patients attached to the ventilator were aware of the rental ventilators. The rental ventilators were generally described as of lower functionality and can more easily break down. The respondents almost uniformly expressed a preference for the hospital-owned ventilators.
CONCLUSIONThis analysis showed that the best ventilator ownership strategy from a purely financial perspective for this hospital is by installment with a 50% down payment and 0% interest. Moderate rates of 15% and 25% interest per year were also good. These were followed by outright purchase and lastly by staggered purchase. The rental strategy gave the lowest cumulative 10-year income compared to any of the ownership strategies, but may still be considered good income because the hospital did not make any investment. However, it seems that most of the healthcare workers involved in taking care of patients on ventilators thought the rental ventilators were of lower quality and preferred the hospital-owned ventilators.
Ventilators, Mechanical
2.Mechanical ventilator acquisition strategy in a large private tertiary medical center using Monte Carlo Simulation
Joven Jeremius Q. Tanchuco ; Fernando B. Garcia
Acta Medica Philippina 2024;58(Early Access 2024):1-13
Background and Objectives:
Mechanical ventilators are essential albeit expensive equipment to support critically ill patients who have gone into respiratory failure. Adequate numbers should always be available to ensure that a hospital provides the optimal care to patients but the number of patients requiring them at any one time is unpredictable. Finding therefore the best balance in providing adequate ventilator numbers while ensuring the financial sustainability of a hospital is important.
Methods:
A quantitative method using Monte Carlo Simulation was used to identify the optimal strategy for acquiring ventilators in a large private tertiary medical center in Metro Manila. The number of ventilators needed to provide ventilator needs 90% of the days per month (27/30) was determined using historical data on ventilator use over a period of four years. Four acquisition strategies were investigated: three ownership strategies (outright purchase, installment, and staggered purchase) and a rental strategy. Return on Investment (ROI), Internal Rate of Return (IRR), Modified Internal Rate of Return (MIRR), Net Present Value (NPV), and Payback period (or Breakeven Point) for each strategy were determined to help recommend the best strategy. A qualitative survey was also conducted among doctors, nurses, and respiratory therapists who were taking care of patients hooked to ventilators to find out their experiences comparing hospital-owned and rental ventilators.
Results:
It was found that a total of 11 respirators were needed by the hospital to ensure that enough respirators were available for its patients at least 90% of the days in any month based on the previous four-year period. This meant acquiring three more ventilators as the hospital already owned eight. Among the strategies studied, projected over a 10-year period, the installment strategy (50% down payment with 0% interest over a 5-year period) proved to be the most financially advantageous with ROI = 9.36 times, IRR = 97% per year, MIRR = 26% per year, NPV = ₱39,324,297.60 and Payback period = 1.03 years). A more realistic installment strategy with 15% (paid quarterly or annually) and 25% annual interest rates were also explored with their financial parameters quite like but not as good as the 0% interest. The outright purchase of three ventilators came in lower (ROI = 4.53 times, IRR = 55% per year, MIRR = 19% per year, NPV = ₱38,064,297.60 and Payback period = 1.81 years) followed last by staggered purchase with ROI = 3.56 times, IRR = 64% per year, MIRR = 28% per year, NPV = ₱29,905,438.08, and payback period of 2.06 years. As there was no investment needed for the rental strategy, the only financial parameter available for it is the NPV which came out as ₱21,234,057.60. The qualitative part of the study showed that most of the healthcare workers involved in the care of patients attached to the ventilator were aware of the rental ventilators. The rental ventilators were generally described as of lower functionality and can more easily break down. The respondents almost uniformly expressed a preference for the hospital-owned ventilators.
Conclusion
This analysis showed that the best ventilator ownership strategy from a purely financial perspective for this hospital is by installment with a 50% down payment and 0% interest. Moderate rates of 15% and 25% interest per year were also good. These were followed by outright purchase and lastly by staggered purchase. The rental strategy gave the lowest cumulative 10-year income compared to any of the ownership strategies, but may still be considered good income because the hospital did not make any investment. However, it seems that most of the healthcare workers involved in taking care of patients on ventilators thought the rental ventilators were of lower quality and preferred the hospital-owned ventilators.
Ventilators, Mechanical
3.Modeling the noninvasive bi-level positive airway pressure ventilation therapy system and simulated application.
Yueyang YUAN ; Li ZHOU ; Haoxuan HUANG ; Wei LIU ; Xingshuo HU ; Lixin XIE
Journal of Biomedical Engineering 2023;40(2):343-349
Without artificial airway though oral, nasal or airway incision, the bi-level positive airway pressure (Bi-PAP) has been widely employed for respiratory patients. In an effort to investigate the therapeutic effects and measures for the respiratory patients under the noninvasive Bi-PAP ventilation, a therapy system model was designed for virtual ventilation experiments. In this system model, it includes a sub-model of noninvasive Bi-PAP respirator, a sub-model of respiratory patient, and a sub-model of the breath circuit and mask. And based on the Matlab Simulink, a simulation platform for the noninvasive Bi-PAP therapy system was developed to conduct the virtual experiments in simulated respiratory patient with no spontaneous breathing (NSB), chronic obstructive pulmonary disease (COPD) and acute respiratory distress syndrome (ARDS). The simulated outputs such as the respiratory flows, pressures, volumes, etc, were collected and compared to the outputs which were obtained in the physical experiments with the active servo lung. By statistically analyzed with SPSS, the results demonstrated that there was no significant difference ( P > 0.1) and was in high similarity ( R > 0.7) between the data collected in simulations and physical experiments. The therapy system model of noninvasive Bi-PAP is probably applied for simulating the practical clinical experiment, and maybe conveniently applied to study the technology of noninvasive Bi-PAP for clinicians.
Humans
;
Respiration, Artificial/methods*
;
Positive-Pressure Respiration/methods*
;
Respiration
;
Ventilators, Mechanical
;
Lung
4.Application of transport ventilator in the inter-hospital transport of critically ill children.
Yuan-Hong YUAN ; Hui ZHANG ; Zheng-Hui XIAO ; Xiu-Lan LU ; Zhi-Yue XU ; Xin-Ping ZHANG ; Xia-Yan KANG ; Xiao-Ping ZHAO ; Li-Fen ZHU
Chinese Journal of Contemporary Pediatrics 2023;25(3):284-288
OBJECTIVES:
To study the application value of transport ventilator in the inter-hospital transport of critically ill children.
METHODS:
The critically ill children in Hunan Children's Hospital who were transported with or without a transport ventilator were included as the observation group (from January 2019 to January 2020; n=122) and the control group (from January 2018 to January 2019; n=120), respectively. The two groups were compared in terms of general data, the changes in heart rate, respiratory rate, and blood oxygen saturation during transport, the incidence rates of adverse events, and outcomes.
RESULTS:
There were no significant differences between the two groups in sex, age, oxygenation index, pediatric critical illness score, course of disease, primary disease, heart rate, respiratory rate, and transcutaneous oxygen saturation before transport (P>0.05). During transport, there were no significant differences between the two groups in the changes in heart rate, respiratory rate, and transcutaneous oxygen saturation (P>0.05). The incidence rates of tracheal catheter detachment, indwelling needle detachment, and sudden cardiac arrest in the observation group were lower than those in the control group during transport, but the difference was not statistically significant (P>0.05). Compared with the control group, the observation group had significantly shorter duration of mechanical ventilation and length of stay in the pediatric intensive care unit and significantly higher transport success rate and cure/improvement rate (P<0.05).
CONCLUSIONS
The application of transport ventilator in the inter-hospital transport can improve the success rate of inter-hospital transport and the prognosis in critically ill children, and therefore, it holds promise for clinical application in the inter-hospital transport of critically ill children.
Child
;
Humans
;
Critical Illness
;
Respiration, Artificial/adverse effects*
;
Intensive Care Units, Pediatric
;
Ventilators, Mechanical
;
Prognosis
5.A new type of artificial airway sealer used between artificial airway and ventilator pipeline.
Chinese Critical Care Medicine 2023;35(9):991-994
The need for mechanical ventilation due to severe hypoxemia and acute respiratory distress syndrome has increased dramatically in the global pandemic of severe respiratory infectious diseases. In clinical scenarios, it is sometimes necessary to briefly disconnect the ventilator pipeline from the artificial airway. Still, this operation can lead to a sharp drop in airway pressure, which is contrary to the protective lung ventilation strategy and increases the risk of environmental exposure to bioaerosol, posing a serious threat to patients and medical workers. At present, there is yet to be a practical solution. A new artificial airway device was designed by the medical staff from the department of critical care medicine of Beijing Tiantan Hospital, Capital Medical University, based on many years of research experience in respiratory support therapy, and recently obtained the National Utility Model Patent of China (ZL 2019 2 0379605.4). The device comprises two connecting pipes, the sealing device body, and the globe valve represented by the iridescent optical ring. It has a simple structure, convenient operation, and low production cost. The device is installed between the artificial airway and the ventilator pipeline and realizes the instantaneous sealing of the artificial airway by adjusting the shut-off valve. Using this device to treat mechanically ventilated patients can minimize the ventilator-induced lung injury caused by the repeated disconnection of pipelines, avoid iatrogenic transmission of bioaerosols, and realize dual protection for patients and medical workers. It has extensive clinical application prospects and high health and economic value.
Humans
;
Respiration, Artificial/adverse effects*
;
Ventilators, Mechanical/adverse effects*
;
Respiratory Distress Syndrome/therapy*
;
Ventilator-Induced Lung Injury/prevention & control*
;
Hypoxia/complications*
6.Respiratory mechanics analysis of inspiratory trigger in mechanical ventilation.
Yunzhen WU ; Na GAI ; Jingjing ZHANG
Chinese Critical Care Medicine 2023;35(10):1116-1120
OBJECTIVE:
To find out the circuit pressure and flow at the trigger point by observing the characteristics of the inspiratory trigger waveform of the ventilator, confirm the intra-alveolar pressure as the index to reflect the effort of the trigger according to the working principle of the ventilator combined with the laws of respiratory mechanics, establish the related mathematical formula, and analyze its influencing factors and logical relationship.
METHODS:
A test-lung was connected to the circuit in a PB840 ventilator and a SV600 ventilator set in pressure-support mode. The positive end-expiratory pressure (PEEP) was set at 5 cmH2O (1 cmH2O ≈ 0.098 kPa), and the wall of test-lung was pulled outwards till an inspiratory was effectively triggered separately in slow, medium, fast power, and separately in flow-trigger mode (sensitivity VTrig 3 L/min, 5 L/min) and pressure-trigger mode (sensitivity PTrig 2 cmH2O, 4 cmH2O). By adjusting the scale of the curve in the ventilator display, the loop pressure and flow corresponding to the trigger point under different triggering conditions were observed. Taking intraalveolar pressure (Pa) as the research object, the Pa (called Pa-T) needed to reach the effective trigger time (TT) was analyzed in the method of respiratory mechanics, and the amplitude of pressure change (ΔP) and the time span (ΔT) of Pa during triggering were also analyzed.
RESULTS:
(1) Corresponding relationship between pressure and flow rate at TT time: in flow-trigger mode, in slow, medium and fast trigger, the inhalation flow rate was VTrig, and the circuit pressure was separately PEEP, PEEP-Pn, and PEEP-Pn' (Pn, Pn', being the decline range, and Pn' > Pn). In pressure-trigger mode, the inhalation flow rate was 1 L/min (PB840 ventilator) or 2 L/min (SV600 ventilator), and the circuit pressure was PEEP-PTrig. (2) Calculation of Pa-T: in flow-trigger mode, in slow trigger: Pa-T = PEEP-VTrigR (R represented airway resistance). In medium trigger: Pa-T = PEEP-Pn-VTrigR. In fast trigger: Pa-T = PEEP-Pn'-VTrigR. In pressure-trigger mode: Pa-T = PEEP-PTrig-1R. (3) Calculation of ΔP: in flow trigger mode, in flow trigger: without intrinsic PEEP (PEEPi), ΔP = VTrigR; with PEEPi, ΔP = PEEPi-PEEP+VTrigR. In medium trigger: without PEEPi, ΔP = Pn+VTrigR; with PEEPi, ΔP = PEEPi-PEEP+Pn+VTrigR. In fast trigger: without PEEPi, ΔP = Pn'+VTrigR; with PEEPi, ΔP = PEEPi-PEEP+Pn'+VTrigR. In pressure-trigger mode, without PEEPi, ΔP = PTrig+1R; with PEEPi, ΔP = PEEPi-PEEP+PTrig+1R. (4) Pressure time change rate of Pa (FP): FP = ΔP/ΔT. In the same ΔP, the shorter the ΔT, the greater the triggering ability. Similarly, in the same ΔT, the bigger the ΔP, the greater the triggering ability. The FP could better reflect the patient's triggering ability.
CONCLUSIONS
The patient's inspiratory effort is reflected by three indicators: the minimum intrapulmonary pressure required for triggering, the pressure span of intrapulmonary pressure, and the pressure time change rate of intrapulmonary pressure, and formula is established, which can intuitively present the logical relationship between inspiratory trigger related factors and facilitate clinical analysis.
Humans
;
Respiration, Artificial/methods*
;
Positive-Pressure Respiration
;
Lung
;
Ventilators, Mechanical
;
Respiratory Mechanics
7.Expert knowledge-based strategies for ventilator parameter setting and stepless adaptive adjustment.
Yongyan WANG ; Songhua MA ; Tianliang HU ; Dedong MA ; Xianhui LIAN ; Shuai WANG ; Jiguo ZHANG
Journal of Biomedical Engineering 2023;40(5):945-952
The setting and adjustment of ventilator parameters need to rely on a large amount of clinical data and rich experience. This paper explored the problem of difficult decision-making of ventilator parameters due to the time-varying and sudden changes of clinical patient's state, and proposed an expert knowledge-based strategies for ventilator parameter setting and stepless adaptive adjustment based on fuzzy control rule and neural network. Based on the method and the real-time physiological state of clinical patients, we generated a mechanical ventilation decision-making solution set with continuity and smoothness, and automatically provided explicit parameter adjustment suggestions to medical personnel. This method can solve the problems of low control precision and poor dynamic quality of the ventilator's stepwise adjustment, handle multi-input control decision problems more rationally, and improve ventilation comfort for patients.
Humans
;
Ventilators, Mechanical
;
Respiration, Artificial
;
Neural Networks, Computer
8.Development of an Active Mechanical Lung for Simulating Human Pulmonary Ventilation.
Yueyang YUAN ; Lei HU ; Zhongkun XIAO ; Tianle ZHOU ; Feng YAO ; Jiaqi CHEN
Chinese Journal of Medical Instrumentation 2023;47(3):264-267
At present, the passive simulated lung including the splint lung is an important device for hospitals and manufacturers in testing the functions of a respirator. However, the human respiration simulated by this passive simulated lung is quite different from the actual respiration. And it is not able to simulate the spontaneous breathing. Therefore, including" the device simulating respiratory muscle work "," the simulated thorax" and" the simulated airway", an active mechanical lung to simulate human pulmonary ventilation was designed:3D printed human respiratory tract was developed and connected the left and right air bags at the end of the respiratory tract to simulate the left and right lungs of the human body. By controlling a motor running to drive the crank and rod to move a piston back and forth, and to deliver an alternating pressure in the simulated pleural, and so as to generate an active respiratory airflow in airway. The experimental respiratory airflow and pressure from the active mechanical lung developed in this study are consistent with the target airflow and pressure which collected from the normal adult. The developed active mechanical lung function will be conducive to improve the quality of the respirator.
Adult
;
Humans
;
Lung/physiology*
;
Respiration
;
Pulmonary Ventilation
;
Respiration, Artificial
;
Ventilators, Mechanical
9.Research and Development Trend of Medical Oxygen Production Equipment.
Hangduo NIU ; Zifu ZHU ; Dandan HU ; Shengcai MA ; Ruowei LI ; Sinian YUAN ; Jilun YE ; Hao JIN
Chinese Journal of Medical Instrumentation 2023;47(3):294-297
Oxygen therapy is an effective clinical method for the treatment of respiratory disorders, oxygen concentrator as a necessary medical auxiliary equipment in hospitals, its research and development has been a hot spot. The study reviewed the development history of the ventilator, introduced the two preparation technique of the oxygen generator pressure swing absorption (PSA) and vacuum pressure swing adsorption (VPSA), and analyzed the core technology development of the oxygen generator. In addition, the study compared some major brands of oxygen concentrators on the market and prospected the development trend of oxygen concentrators.
Oxygen
;
Oxygen Inhalation Therapy
;
Hospitals
;
Ventilators, Mechanical
;
Equipment Design
10.Effect of fraction of inspired oxygen baseline level on the mask ventilation time before intubation in emergency patients by monitoring of expiratory oxygen concentration.
Yili DAI ; Huadong ZHU ; Jun XU ; Xuezhong YU
Chinese Critical Care Medicine 2023;35(4):358-361
OBJECTIVE:
To investigate the effect of different fraction of inspired oxygen (FiO2) baseline levels before endotracheal intubation on the time of expiratory oxygen concentration (EtO2) reaching the standard in emergency patients with the EtO2 as the monitoring index.
METHODS:
A retrospective observational study was conducted. The clinical data of patients receiving endotracheal intubation in the emergency department of Peking Union Medical College Hospital from January 1 to November 1 in 2021 were enrolled. In order to avoid interference with the final result due to inadequate ventilation caused by non-standard operation or air leakage, the process of the continuous mechanical ventilation after FiO2 was adjusted to pure oxygen in patients who had been intubated was selected to simulate the process of mask ventilation under pure oxygen before intubation. Combined with the electronic medical record and the ventilator record, the changes of the time required to reach 0.90 of EtO2 (that was, the time required to reach the standard of EtO2) and the respiratory cycle required to reach the standard after adjusting FiO2 to pure oxygen under different baseline levels of FiO2 were analyzed.
RESULTS:
113 EtO2 assay records were collected from 42 patients. Among them, 2 patients had only one EtO2 record due to the FiO2 baseline level of 0.80, while the rest had two or more records of EtO2 reaching time and respiratory cycle corresponding to different FiO2 baseline level. Among the 42 patients, most of them were male (59.5%), elderly [median age was 62 (40, 70) years old] patients with respiratory diseases (40.5%). There were significant differences in lung function among different patients, but the majority of patients with normal function [oxygenation index (PaO2/FiO2) > 300 mmHg (1 mmHg ≈ 0.133 kPa), 38.0%]. In the setting of ventilator parameters, combined with the slightly lower arterial partial pressure of carbon dioxide of patients [33 (28, 37) mmHg], mild hyperventilation phenomenon was considered to be widespread. With the increased in FiO2 baseline level, the time of EtO2 reaching standard and the number of respiratory cycles showed a gradually decreasing trend. When the FiO2 baseline level was 0.35, the time of EtO2 reaching the standard was the longest [79 (52, 87) s], and the corresponding median respiratory cycle was 22 (16, 26) cycles. When the FiO2 baseline level was increased from 0.35 to 0.80, the median time of EtO2 reaching the standard was shortened from 79 (52, 78) s to 30 (21, 44) s, and the median respiratory cycle was also reduced from 22 (16, 26) cycles to 10 (8, 13) cycles, with statistically significant differences (both P < 0.05).
CONCLUSIONS
The higher the FiO2 baseline level of the mask ventilation in front of the endotracheal intubation in emergency patients, the shorter the time for EtO2 reaching the standard, and the shorter the mask ventilation time.
Aged
;
Humans
;
Male
;
Middle Aged
;
Female
;
Intubation, Intratracheal
;
Respiration
;
Ventilators, Mechanical
;
Arteries
;
Blood Gas Analysis


Result Analysis
Print
Save
E-mail