1.Research progress on the role of mechanical stretch in the injury and repair of alveolar epithelial cells.
Xinyi TANG ; Haoyue XUE ; Yongpeng XIE
Chinese Critical Care Medicine 2025;37(1):92-96
Mechanical ventilation (MV) is currently widely used in the treatment of respiratory failure and anesthesia surgery, and is a commonly used respiratory support method for critically ill patients; however, improper usage of MV can lead to ventilator-induced lung injury (VILI), which poses a significant threat to patient life. Alveolar epithelial cell (AEC) has the functions of mechanosensation and mechanotransduction. Physiological mechanical stretching is beneficial for maintaining the lineage homeostasis and normal physiological functions of AEC cells, while excessive mechanical stretching can cause damage to AEC cells. Damage to AEC cells is an important aspect in the occurrence and development of VILI. Understanding the effects of mechanical stretching on AEC cells is crucial for developing safe and effective MV strategies, preventing the occurrence of VILI, and improving the clinical prognosis of VILI patients. From the perspective of cell mechanics, this paper aims to briefly elucidate the mechanical properties of AEC cells, mechanosensation and mechanotransduction of mechanical stretching in AEC cells, and the injury and repair of AEC cells under mechanical stretch stimulation, and potential mechanisms with the goal of helping clinical doctors better understand the pathophysiological mechanism of VILI caused by MV, improve their understanding of VILI, provide safer and more effective strategies for the use of clinical MV, and provide theoretical basis for the prevention and treatment of VILI.
Humans
;
Mechanotransduction, Cellular
;
Ventilator-Induced Lung Injury
;
Stress, Mechanical
;
Alveolar Epithelial Cells
;
Respiration, Artificial/adverse effects*
;
Epithelial Cells
;
Pulmonary Alveoli/cytology*
;
Animals
2.Research advancements on the role of long non-coding RNA in ventilator-induced lung injury.
Zhijiang FU ; Leilei ZHOU ; Xianming ZHANG
Chinese Critical Care Medicine 2025;37(2):188-192
Mechanical ventilation is commonly employed for respiratory support in patients with respiratory failure. Despite the optimization of ventilator parameters and treatment methods, mechanical ventilation can still lead to both acute and chronic lung injury in patients with acute respiratory distress syndrome (ARDS) as well as in those without ARDS, a phenomenon referred to as ventilator-induced lung injury (VILI). VILI can be categorized into four types: barotrauma, volumetric injury, atelectasis injury, and biotic injury. Among these, biotic injury, characterized by inflammation, plays a significant role in the pathogenesis of VILI. Numerous studies have investigated the inflammatory mechanisms underlying VILI; however, these mechanisms remain complex and not entirely understood. At present, clinical practice lacks specific prevention and treatment strategies for VILI, aside from the implementation of protective ventilation strategies. Long non-coding RNAs (lncRNA) are a category of non-coding RNA longer than 200 nucleotides. LncRNAs regulate physiological and pathological processes such as cell proliferation, apoptosis, inflammatory response, and immune regulation, this regulation occurs through mechanisms such as modulating gene activity, inhibiting specific states, assisting in transcription initiation, affecting pre-mRNA splicing modifications, influencing translation processes, and expressing biofunctional peptides. They play an important role in the course of multiple diseases. Studies have shown that compared with control animals and cell models, lncRNAs are differentially expressed in VILI animal models and cell stretch models. Experiments have verified that certain lncRNAs play a crucial role in the pathogenesis of VILI by regulating the expression of inflammatory factors, the transformation of macrophage types, neutrophil activation, and cell apoptosis. Given the adverse effects of VILI on mechanical ventilation in critically ill patients, the important role of lncRNAs in biological regulation, and the urgent need to explore more effective strategies for the prevention and treatment of VILI, this paper summarizes the mechanisms through which lncRNA contributes to the VILI process, and discusses its possibility as a diagnostic and therapeutic target of VILI, in order to provide a reference for the clinical treatment of VILI.
RNA, Long Noncoding
;
Ventilator-Induced Lung Injury
;
Humans
;
Respiration, Artificial/adverse effects*
;
Animals
;
Respiratory Distress Syndrome
;
Apoptosis
3.Acute respiratory distress syndrome caused by severe respiratory infectious diseases: clinical significance and solution of maintaining artificial airway closure.
Junyi ZHANG ; Yiqing LI ; Hongliang LI ; Jianxin ZHOU
Chinese Critical Care Medicine 2025;37(3):221-224
Since the beginning of the 21st century, the severe respiratory infectious diseases worldwide [such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), influenza A H1N1 and novel coronavirus infection have attracted wide attention from all walks of life due to their superior pathogenicity and transmissibility. Aerosols-carrying pathogens are the main transmission route of many severe respiratory infectious diseases, which can lead to severe respiratory failure and even acute respiratory distress syndrome (ARDS) in infected individuals. Mechanical ventilation is the primary treatment for ARDS, and the small tidal volume, appropriate level of positive end-expiratory pressure based lung protective ventilation strategy can effectively reduce the incidence of ventilator-induced lung injury (VILI). However, in the process of clinical treatment, it is sometimes necessary to briefly disconnect the connection between the artificial airway and the ventilator circuit, which will not only cause the residual aerosol in the respiratory system to spill out and pollute the surrounding environment, increase the risk of nosocomial infection including medical staff, but also interfere with the implementation of lung protective ventilation strategy and aggravate ventilator-induced lung injury. In addition, studies have shown that a lot of medical staff have nosocomial infections, especially staff involved in tracheal intubation, extubation and other airway related operations. In addition to enhancing personal protective measures, it is crucial to safeguard healthcare workers from aerosol contamination and minimize associated risks during airway management. At present, there are few researches on the temporary sealing of airway lines and ventilator system, and there is a lack of clear guidance. This review summarizes the research status in related fields to provide a reference for corresponding solutions and programs.
Humans
;
Respiratory Distress Syndrome/etiology*
;
Respiration, Artificial
;
Ventilator-Induced Lung Injury/prevention & control*
;
Severe Acute Respiratory Syndrome
;
COVID-19
;
Clinical Relevance
4.Role of innate immunity in the pathogenesis of ventilation-induced lung injury.
Yi SHEN ; Leilei ZHOU ; Wenqing JIANG ; Xianming ZHANG
Chinese Critical Care Medicine 2023;35(4):442-445
For patients receiving mechanical ventilation, mechanical ventilation is also an injury factor at the same time of treatment, which can lead to or aggravate lung injury, that is, ventilator-induced lung injury (VILI). The typical feature of VILI is that the mechanical stress is transmitted to cells through the pathway, leading to uncontrollable inflammatory cascade reaction, which causes the activation of inflammatory cells in the lung and the release of a large number of cytokines and inflammatory mediators. Among them, innate immunity is also involved in the occurrence and development of VILI. A large number of studies have shown that damaged lung tissue in VILI can regulate inflammatory response by releasing a large number of damage associated molecular pattern (DAMP). Pattern recognition receptor (PRR) participates in the activation of immune response by combining with DAMP, and releases a large number of inflammatory mediators to promote the occurrence and development of VILI. Recent studies have shown that inhibition of DAMP/PRR signaling pathway can play a protective role in VILI. Therefore, this article will mainly discuss the potential role of blocking DAMP/PRR signal pathway in VILI, and provide new ideas for the treatment of VILI.
Humans
;
Respiration, Artificial
;
Respiration
;
Immunity, Innate
;
Ventilator-Induced Lung Injury
;
Inflammation
;
Inflammation Mediators
;
Lung
5.A new type of artificial airway sealer used between artificial airway and ventilator pipeline.
Chinese Critical Care Medicine 2023;35(9):991-994
The need for mechanical ventilation due to severe hypoxemia and acute respiratory distress syndrome has increased dramatically in the global pandemic of severe respiratory infectious diseases. In clinical scenarios, it is sometimes necessary to briefly disconnect the ventilator pipeline from the artificial airway. Still, this operation can lead to a sharp drop in airway pressure, which is contrary to the protective lung ventilation strategy and increases the risk of environmental exposure to bioaerosol, posing a serious threat to patients and medical workers. At present, there is yet to be a practical solution. A new artificial airway device was designed by the medical staff from the department of critical care medicine of Beijing Tiantan Hospital, Capital Medical University, based on many years of research experience in respiratory support therapy, and recently obtained the National Utility Model Patent of China (ZL 2019 2 0379605.4). The device comprises two connecting pipes, the sealing device body, and the globe valve represented by the iridescent optical ring. It has a simple structure, convenient operation, and low production cost. The device is installed between the artificial airway and the ventilator pipeline and realizes the instantaneous sealing of the artificial airway by adjusting the shut-off valve. Using this device to treat mechanically ventilated patients can minimize the ventilator-induced lung injury caused by the repeated disconnection of pipelines, avoid iatrogenic transmission of bioaerosols, and realize dual protection for patients and medical workers. It has extensive clinical application prospects and high health and economic value.
Humans
;
Respiration, Artificial/adverse effects*
;
Ventilators, Mechanical/adverse effects*
;
Respiratory Distress Syndrome/therapy*
;
Ventilator-Induced Lung Injury/prevention & control*
;
Hypoxia/complications*
6.Tidal volume in mechanically ventilated dogs: can human strategies be extrapolated to veterinary patients?
Pablo A DONATI ; Gustavo PLOTNIKOW ; Gloria BENAVIDES ; Guillermo BELERENIAN ; Mario JENSEN ; Leonel LONDOÑO
Journal of Veterinary Science 2019;20(3):e21-
This paper compares and describes the tidal volume (Vt) used in mechanically ventilated dogs under a range of clinical conditions. Twenty-eight dogs requiring mechanical ventilation (MV) were classified into 3 groups: healthy dogs mechanically ventilated during surgery (group I, n = 10), dogs requiring MV due to extra-pulmonary reasons (group II, n = 7), and dogs that required MV due to pulmonary pathologies (group III, n = 11). The median Vt used in each group was 16 mL/kg (interquartile range [IQR], 15.14–21) for group I, 12.59 mL/kg (IQR, 9–14.25) for group II, and 12.59 mL/kg (IQR, 10.15–14.96) for group III. The Vt used was significantly lower in group III than in group I (p = 0.016). The thoraco-pulmonary compliance was significantly higher in group I than in groups II and III (p = 0.011 and p = 0.006, respectively). The median driving pressure was similar among the groups with a median of 9, 11, and 10 cmH2O in groups I, II, and III, respectively (p = 0.260). Critically-ill dogs requiring MV due to the primary pulmonary pathology received a significantly lower Vt than healthy dogs but with a range of values that were markedly higher than those recommended by human guidelines.
Animals
;
Compliance
;
Dogs
;
Humans
;
Pathology
;
Respiration, Artificial
;
Tidal Volume
;
Ventilator-Induced Lung Injury
7.Research progress in perioperative ventilator-induced lung injury.
Journal of Central South University(Medical Sciences) 2019;44(4):346-353
Lung-protective ventilation (such as low tidal volume and application of positive end-expiratory pressure) is beneficial for patients with acute lung injury or acute respiratory distress syndrome (ARDS) and has become the standard treatment in intensive care unit (ICU). However, some experts now question whether the protective ventilation strategy for ARDS patients in the ICU is equally beneficial for patients after surgery, especially for most patients without any pre-existing lung lesions. This review will discuss preoperative, intraoperative, and postoperative lung protection strategies to reduce the risk of complications associated with anesthesia.
Humans
;
Positive-Pressure Respiration
;
Respiration, Artificial
;
Respiratory Distress Syndrome, Adult
;
Tidal Volume
;
Ventilator-Induced Lung Injury
8.Role and mechanism of Ly6Chigh monocyte in ventilator-induced lung injury in mice.
Chen ZHAO ; Weikang ZHANG ; Huijun DAI ; Linghui PAN
Chinese Critical Care Medicine 2019;31(9):1123-1127
OBJECTIVE:
To investigate the role and mechanism of Ly6Chigh monocyte in mice with ventilator-induced lung injury (VILI).
METHODS:
Forty-eight healthy male SPF C57BL/6 mice were divided into spontaneous breathing group (n = 8), normal tidal volume (VT) group (VT was 8 mL/kg, n = 8), and high VT group (VT was 20 mL/kg, n = 32). The mice in the high VT group were subdivided into 1, 2, 3 and 4 hours subgroups, with 8 mice in each subgroup. All mice underwent direct tracheal intubation, those in the spontaneous breathing group maintained spontaneous breathing, and those in the normal VT group and high VT group were mechanically ventilated with different VT. After ventilation for 4 hours, bronchoalveolar lavage fluid (BALF) was collected to determine total protein, and the levels of inflammatory factors including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were determined by enzyme-linked immune sorbent assay (ELISA). The lung tissues were harvested to determine the wet/dry (W/D) ratio, and lung tissue injury was assessed in terms of lung histopathologic examination after hematoxylin-eosin (HE) staining under the light microscope. The protein expressions of monocyte chemotactic protein-1 (MCP-1) and CC-chemokine receptor 2 (CCR2) in lung tissues were determined by Western Blot. Flow cytometry was used to detect the proportion of Ly6Chigh monocyte in lung tissue.
RESULTS:
The histopathology of lung tissue structures was normal in the spontaneous breathing group and the normal VT group. Inflammatory reaction began to appear at 2 hours of high VT ventilation, and inflammatory reaction was gradually aggravated with the time extension. Compared with the spontaneous breathing group, the total protein, TNF-α, and IL-1β levels in BALF, the lung W/D ratio and MCP-1 expression were increased from 2 hours of high VT ventilation [total protein in BALF (g/L): 1.05±0.13 vs. 0.58±0.11, TNF-α in BALF (ng/L): 116.86±16.14 vs. 38.27±8.00, IL-1β in BALF (ng/L): 178.98±10.41 vs. 117.56±23.40, lung W/D ratio: 5.76±0.27 vs. 4.98±0.39, MCP-1/GAPDH: 0.87±0.19 vs. 0.29±0.12, all P < 0.05], and CCR2 expression and the proportion of Ly6Chigh monocyte was significantly increased from 3 hours of high VT ventilation [CCR2/GAPDH: 0.84±0.19 vs. 0.24±0.11, Ly6Chigh monocyte proportion: (9.01±2.47)% vs. (1.06±0.35)%, both P < 0.05], and they all showed an increased tendency with the time extension. There was no significant difference in the parameters mentioned above among the spontaneous breathing group, normal VT group and high VT ventilation 1-hour group.
CONCLUSIONS
Ly6Chigh monocytes are involved in VILI, which aggravate VILI by activating the MCP-1/CCR2 axis.
Animals
;
Antigens, Ly/metabolism*
;
Lung
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Monocytes
;
Rats
;
Rats, Sprague-Dawley
;
Tidal Volume
;
Tumor Necrosis Factor-alpha
;
Ventilator-Induced Lung Injury
9.Research status of mechanical power in ventilator-induced lung injury.
Xiumei SUN ; Yumei WANG ; Yanlin YANG ; Jianxin ZHOU
Chinese Critical Care Medicine 2019;31(12):1549-1551
The ventilator-induced lung injury (VILI) was centered on the "static" characteristics of the mechanical ventilation in early phases (tidal volume, plateau pressure, positive end-expiratory pressure and driving pressure). But the "dynamic" characteristics of ventilation must not be ignored (respiratory rate and flow). Mechanical energy and mechanical power (the pace of performing energy load) regarding all factor have won wide spread attention. The energy generated by mechanical ventilation is mainly used to expand respiratory system and overcome resistance, a fraction of energy acts on lung tissues probably inducing "heat" and inflammation that is related to lung injury. The review described recent conceptual advances regarding the mechanical energy and power, and the relationship with VILI, hoping to help further understanding the risk factors for VILI.
Humans
;
Lung
;
Positive-Pressure Respiration
;
Respiration, Artificial
;
Respiratory Distress Syndrome
;
Tidal Volume
;
Ventilator-Induced Lung Injury
10.Effect of high tidal volume mechanical ventilation on pulmonary autophagy and mitochondrial damage in rats.
Zhaokun HU ; Ren JING ; Huijun DAI ; Suisui ZHANG ; Linghui PAN
Chinese Critical Care Medicine 2019;31(3):325-330
OBJECTIVE:
To investigate the relationship between different tidal volume (VT) mechanical ventilation (MV) and autophagy and mitochondrial damage in rats.
METHODS:
A total of 120 clean-grade male Sprague-Dawley (SD) rats were divided into five groups (n = 24) by random number table method, and then given 0 (spontaneous breathing), 10, 20, 30, 40 mL/kg VT for MV. The rats in each group were subdivided into four subgroups of 1, 2, 3, and 4 hours according to ventilation time, with 6 rats in each subgroup. The lung tissue and bronchoalveolar lavage fluid (BALF) were harvested, and alveolar macrophages (AMs) and type II alveolar epithelial cells (AEC II) were cultured in vitro. The mRNA and protein expressions of autophagy-associated protein microtubule-associated protein 1 light chain 3B-II (LC3B-II) and autophagy-related genes Beclin1 and p62 were determined by reverse transcription-polymerase chain reaction (RT-PCR) or Western Blot. Lung autophagosome formation was observed under transmission electron microscope. The levels of adenosine triphosphate (ATP), reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) in lung tissue were determined for assessing mitochondrial damage.
RESULTS:
There were no significant differences in the mRNA and protein expressions of LC3B-II, p62 and Beclin1 at 1 hour after ventilation among the groups. With the prolonged ventilation time, the mRNA and protein expressions of LC3B-II, p62 and Beclin1 in MV groups were increased gradually, peaked at 2-3 hours, and they were increased significantly in 30 mL/kg VT group as compared with those in spontaneous respiration group with statistical significances [ventilation for 2 hours: LC3B-II mRNA (2-ΔΔCt) was 2.44±0.24 vs. 1.12±0.04, LC3B-II/LC3B-I was 1.42±0.16 vs. 0.57±0.03, p62 mRNA (2-ΔΔCt) was 2.96±0.14 vs. 1.14±0.02, Beclin1 mRNA (2-ΔΔCt) was 2.80±0.13 vs. 1.14±0.02; ventilation for 3 hours: p62/β-actin was 1.14±0.15 vs. 0.55±0.04, Beclin1/β-actin was 1.27±0.06 vs. 0.87±0.04, all P < 0.05]. Autophagosomes and autolysosomes were found in AEC II after ventilation for 2 hours at 30 mL/kg VT by transmission electron microscopy, but not in AEC I. Compared with spontaneous breathing group, ATP synthesis in AMs was significantly decreased at 2 hours of ventilation in 30 mL/kg VT group (A value: 0.82±0.05 vs. 1.00±0.00, P < 0.05), ROS accumulate in AMs and AEC II were significantly increased [ROS in AMs: (33.83±4.00)% vs. (6.90±0.62)%, ROS in AEC II: (80.68±0.90)% vs. (2.16±0.19)%, both P < 0.05]. With the increase in VT and the prolongation of ventilation time, ATP and ROS levels in AMs and AEC II were gradually decreased, the ATP (A value) in AMs at 4 hours of ventilation in 40 mL/kg VT group was 0.41±0.05, the ROS in AMs was (12.95±0.88)%, and the ROS in AEC II was (40.43±2.29)%. With the increase in VT and the prolongation of ventilation time, MMP levels were gradually increased, the MMP (green/red fluorescence intensity ratio) in AMs at 2 hours of ventilation in 30 mL/kg VT group was 1.11±0.17, the MMP in AEC II was 0.96±0.04, and the MMP (green/red fluorescence intensity ratio) at 4 hours of ventilation in 40 mL/kg VT group was 0.51±0.07 and 0.49±0.06, respectively.
CONCLUSIONS
The MV with high VT could induce autophagy activation and mitochondrial damage in lung tissue of rats, and the longer the ventilation time, the more obvious autophagy in the lung.
Animals
;
Autophagy/physiology*
;
Male
;
Mitochondria/pathology*
;
Rats
;
Rats, Sprague-Dawley
;
Respiration, Artificial/adverse effects*
;
Tidal Volume
;
Time Factors
;
Ventilator-Induced Lung Injury

Result Analysis
Print
Save
E-mail