1.Association of polymorphisms of VEGF and VEGFR1 pathways related genes and risk of pre-eclampsia.
Li LI ; Xiangcui GUO ; Beibei CHEN ; Zhihui GAO ; Juan LIU ; Qiangqing WANG
Chinese Journal of Medical Genetics 2022;39(8):893-897
OBJECTIVE:
To assess the association of single nucleotide polymorphisms (SNPs) of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 1 (VEGFR1) pathways-related genes and the risk of pre-eclampsia.
METHODS:
In total 178 pregnant women with pre-eclampsia (case group) and 100 healthy pregnant women (control group) during the third trimester were enrolled. The SNPs of VEGF rs3025039, rs2010963 and VEGFR1 rs3812867, rs55875014 and rs722503 loci were determined by PCR-restriction fragment length polymorphism (PCR-RFLP) assay. The levels of serum VEGF and sVEGFR1 were also determined. And their association with pre-eclampsia was analyzed.
RESULTS:
The systolic blood pressure, diastolic blood pressure and sVEGFR1 of the case group were significantly higher than those of the control group, while the VEGF level was significantly lower than that in the control group (P<0.05). Allelic frequencies of the VEGF (rs3025039, rs2010963) and VEGFR1 (rs3812867, rs55875014, rs722503) have fit the Hardy-Weinberg equilibrium (P>0.05). The frequency of T allele of VEGF at rs3025039 locus in the case group was higher than that in the control group (P<0.05). There were significant differences in VEGF at rs3025039 locus under dominant and co-dominant models in case group (P<0.05). Compared with those with CC, the risk was higher in patients with CT or TT genotypes (P<0.05). The systolic and diastolic blood pressure and sVEGFR1 in pre-eclampsia pregnant women with CT or TT genotypes were significantly higher than those with the CC genotype, while their VEGF level was significantly lower (P<0.05). No significant difference was found in allelic frequencies of other four loci between the two groups (P>0.05).
CONCLUSION
Polymorphisms of rs3025039 locus of VEGF gene is associated with the occurrence of pre-eclampsia. The variant at this locus may affect the activity of VEGF and influence the development of pre-eclampsia.
Case-Control Studies
;
Female
;
Genetic Predisposition to Disease
;
Genotype
;
Humans
;
Polymorphism, Single Nucleotide
;
Pre-Eclampsia/genetics*
;
Pregnancy
;
Vascular Endothelial Growth Factor A/genetics*
;
Vascular Endothelial Growth Factor Receptor-1/genetics*
;
Vascular Endothelial Growth Factors/genetics*
2.Effect of hypoxia on HIF -1 α/MDR1/VEGF expression in gastric cancer cells treated with 5 -fluorouracil.
Lu WANG ; Wei XING ; Jin QI ; Yongyan LU ; Linbiao XIANG ; Yali ZHOU
Journal of Central South University(Medical Sciences) 2022;47(12):1629-1636
OBJECTIVES:
Fluorouracil chemotherapeutic drugs are the classic treatment drugs of gastric cancer. But the problem of drug resistance severely limits their clinical application. This study aims to investigate whether hypoxia microenvironment affects gastric cancer resistance to 5-fluorouracil (5-FU) and discuss the changes of gene and proteins directly related to drug resistance under hypoxia condition.
METHODS:
Gastric cancer cells were treated with 5-FU in hypoxia/normoxic environment, and were divided into a Normoxic+5-FU group and a Hypoxia+5-FU group. The apoptosis assay was conducted by flow cytometry Annexin V/PI double staining. The real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to detect the expression level of hypoxia inducible factor-1α (HIF-1α), multidrug resistance (MDR1) gene, P-glycoprotein (P-gp), and vascular endothelial growth factor (VEGF) which were related to 5-FU drug-resistance. We analyzed the effect of hypoxia on the treatment of gastric cancer with 5-FU.
RESULTS:
Compared with the Normoxic+5-FU group, the apoptosis of gastric cancer cells treated with 5-FU in the Hypoxia+5-FU group was significantly reduced (P<0.05), and the expression of apoptosis promoter protein caspase 8 was also decreased. Compared with the the Normoxic+5-FU group, HIF-1α mRNA expression in the Hypoxia+5-FU group was significantly increased (P<0.05), and the mRNA and protein expression levels of MDR1, P-gp and VEGF were also significantly increased (all P<0.05). The increased expression of MDR1, P-gp and VEGF had the same trend with the expression of HIF-1α.
CONCLUSIONS
Hypoxia is a direct influencing factor in gastric cancer resistance to 5-FU chemotherapy. Improvement of the local hypoxia microenvironment of gastric cancer may be a new idea for overcoming the resistance to 5-FU in gastric cancer.
Humans
;
Fluorouracil/therapeutic use*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Stomach Neoplasms/drug therapy*
;
Drug Resistance, Multiple
;
Vascular Endothelial Growth Factors/metabolism*
;
Hypoxia
;
ATP Binding Cassette Transporter, Subfamily B/genetics*
;
ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics*
;
Cell Line, Tumor
;
Cell Hypoxia
;
RNA, Messenger/metabolism*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Tumor Microenvironment
3.Production of high-purity recombinant human vascular endothelial growth factor (rhVEGF165) by Pichia pastoris.
Weijie ZHOU ; Fengmei WU ; Dongsheng YAO ; Chunfang XIE
Chinese Journal of Biotechnology 2021;37(11):4083-4094
Vascular endothelial growth factor (VEGF165) is a highly specific vascular endothelial growth factor that can be used to treat many cardiovascular diseases. The development of anti-tumor drugs and disease detection reagents requires highly pure VEGF165 (at least 95% purity). To date, the methods for heterologous expression and purification of VEGF165 require multiple purification steps, but the product purity remains to be low. In this study, we optimized the codons of the human VEGF165 gene (vegf165) according to the yeast codon preference. Based on the Pichia pastoris BBPB vector, we used the Biobrick method to construct a five-copy rhVEGF165 recombinant expression vector using Pgap as the promoter. In addition, a histidine tag was added to the vector. Facilitated by the His tag and the heparin-binding domain of VEGF165, we were able to obtain highly pure rhVEGF165 (purity > 98%) protein using two-step affinity chromatography. The purified rhVEGF165 was biologically active, and reached a concentration of 0.45 mg/mL. The new design of the expression vector enables production of active and highly pure rhVEGF165 ) in a simplified purification process, the purity of the biologically active natural VEGF165 reached the highest reported to date.
Codon/genetics*
;
Humans
;
Pichia/genetics*
;
Recombinant Proteins/genetics*
;
Saccharomycetales
;
Vascular Endothelial Growth Factor A/genetics*
;
Vascular Endothelial Growth Factors
4.Extracellular signal-regulated kinase signaling pathway regulates the endothelial differentiation of periodontal ligament stem cells.
Hong ZHU ; Lankun LUO ; Ying WANG ; Jun TAN ; Peng XUE ; Qintao WANG
Chinese Journal of Stomatology 2016;51(3):154-159
OBJECTIVETo investigate the effect of extracellular signal-regulated kinase (ERK) signaling pathway on the endothelial differentiation of periodontal ligament stem cells (PDLSC).
METHODSHuman PDLSC was cultured in the medium with vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF) to induce endothelial differentiation. Endothelial inducing cells was incubated with U0126, a specific p-ERK1/2 inhibitor. PDLSC from one person were randomly divided into four groups: control group, endothelial induced group, endothelial induced+DMSO group and endothelial induced+U0126 group. The protein expression of the p-EKR1/2 was analyzed by Western blotting at 0, 1, 3, 6 and 12 hours during endonthelial induction. The mRNA expressions of CD31, VE-cadherin, and VEGF were detected by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) after a 7-day induction. The proportion of CD31(+) to VE-cadherin(+) cells was identified by flow cytometry, and the ability of capillary-like tubes formation was detected by Matrigel assay after a 14-day induction. The measurement data were statistically analyzed.
RESULTSPhosphorylated ERK1/2 protein level in PDLSC was increased to 1.24±0.12 and 1.03±0.24 at 1 h and 3 h respectively, during the endothelial induction (P<0.01). The mRNA expressions of CD31 and VEGF in induced+U0126 group were decreased to 0.09±0.18 and 0.49±0.17, which were both significantly different with those in induced group (P<0.05). The proportion of CD31(+) to VE-cadherin(+) cells of induced+U0126 group were decreased to 5.22±0.85 and 3.56±0.87, which were both significantly different with those in induced group (P<0.05). In Matrigel assay, the branching points, tube number and tube length were decreased to 7.0±2.7, 33.5±6.4, and (15 951.0±758.1) pixels, which were all significantly different with those in induced group (P<0.05).
CONCLUSIONSThe endothelial differentiation of PDLSC is positively regulated by ERK signaling pathway. Inhibition of ERK1/2 phosphorylation could suppress endothelial differentiation of PDLSC.
Antigens, CD ; genetics ; metabolism ; Butadienes ; pharmacology ; Cadherins ; genetics ; metabolism ; Cell Differentiation ; Endothelial Cells ; cytology ; physiology ; Enzyme Inhibitors ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; physiology ; Fibroblast Growth Factor 2 ; pharmacology ; Humans ; Mitogen-Activated Protein Kinase 3 ; antagonists & inhibitors ; metabolism ; Nitriles ; pharmacology ; Periodontal Ligament ; cytology ; metabolism ; Phosphorylation ; Platelet Endothelial Cell Adhesion Molecule-1 ; genetics ; metabolism ; RNA, Messenger ; metabolism ; Random Allocation ; Signal Transduction ; Stem Cells ; cytology ; physiology ; Time Factors ; Vascular Endothelial Growth Factor A ; genetics ; metabolism ; pharmacology
5.XCT790 inhibits rat vascular smooth muscle cells proliferation through down-regulating the expression of estrogen-related receptor alpha.
Yun-Hong LU ; Qun-Yi LI ; Li CHEN ; Xiao-Jin SHI
Acta Pharmaceutica Sinica 2014;49(2):190-197
Abnormal proliferation of vascular smooth muscle cells (VSMCs) plays an important role in several pathological processes of cardiovascular diseases. In this study, the effects of XCT790, a potent and selective inverse agonist of estrogen-related receptor alpha (ERRalpha), on rat VSMCs proliferation and related signal pathways were investigated. The proliferative activity of VSMCs was determined by CCK-8 assay. The mRNA levels of ERRalpha, PGC-1alpha, OPN and MCAD were assayed by RT-PCR. The protein levels of ERRalpha, ERK2 and p-ERK1/2 were evaluated by Western blotting. ELISA was used to assess the protein expression of VEGF. The results showed that XCT790 (5-20 micromol x L(-1)) inhibited rat VSMCs proliferation, and the expression of ERRalpha and its target genes, as well as p-ERK1/2, were also inhibited. XCT790 inhibited VSMCs proliferation in a dose-dependent manner at the dose range from 5 to 20 micromol x L(-1) and in a time-dependent manner at the dose range from 10 to 20 micromol x L(-1). These findings demonstrate that XCT790 inhibits rat VSMCs proliferation by down-regulating the gene level of ERRalpha and thus inhibiting the ERK signal pathway, suggesting that ERRalpha may be a novel potential target for therapeutic approaches to inhibit VSMCs proliferation, which plays an important role in several cardiovascular diseases.
Animals
;
Cadherins
;
genetics
;
metabolism
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Cytoskeletal Proteins
;
genetics
;
metabolism
;
Dose-Response Relationship, Drug
;
GTPase-Activating Proteins
;
genetics
;
metabolism
;
MAP Kinase Signaling System
;
Male
;
Muscle, Smooth, Vascular
;
cytology
;
Myocytes, Smooth Muscle
;
cytology
;
drug effects
;
metabolism
;
Nitriles
;
administration & dosage
;
pharmacology
;
Nuclear Proteins
;
genetics
;
metabolism
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
Phosphorylation
;
RNA, Messenger
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Estrogen
;
genetics
;
metabolism
;
Thiazoles
;
administration & dosage
;
pharmacology
;
Transcription Factors
;
genetics
;
metabolism
;
Vascular Endothelial Growth Factor A
;
genetics
;
metabolism
6.Vascular endothelial growth inhibitor affects the invasion, apoptosis and vascularisation in breast cancer cell line MDA-MB-231.
Yinguang GAO ; Zhicheng GE ; Zhongtao ZHANG ; Zhigang BAI ; Xuemei MA ; Yu WANG
Chinese Medical Journal 2014;127(10):1947-1953
BACKGROUNDBreast cancer is one of the most common malignant female diseases worldwide. It is a significant threat to every woman's health. Vascular endothelial growth inhibitor (VEGI) is known to be abundant in endothelial cells. According to previous literature, overexpression of VEGI has been shown to inhibit tumor neovascularisation and progression in cellular and animal models, but there has been limited research on the significance of VEGI in the breast cancer.
METHODSIn our study, cell lines MDA-MB-231 were first constructed in which VEGI mediated by lentivirus over-expressed. The effects of VEGI over-expression on MDA-MB-231 cells were investigated both in vitro and in vivo. The expression of VEGI in the MDA-MB-231 cells after infection of lentivirus was analyzed using real-time PCR and Western blotting. The effect of the biological characteristics of MDA-MB-231 cells was assessed by growth, invasion, adhesion, and migration assay with subcutaneous tumor-bearing nude mice models. Then the growth curves of the subcutaneous tumors were studied. Expressions of VEGI, CD31 and CD34 in the tumors were analyzed by immunohistochemistry and apoptosis was detected by flow cytometry and immunohistochemistry.
RESULTSInfection of MDA-MB-231 cells within the lentivirus resulted in approximately a 1 000-fold increase in the expression of VEGI. As can be seen in the invasion, adhesion and migration assay, the over-expression of VEGI can inhibit the ability of MDA-MB-231 cells during migration, adhesion and invasion. The volume of the subcutaneous tumor in the over-expression group was distinctly and significantly less than that of the control groups. Immunohistochemistry analysis of the tumor biopsies clearly showed the expression of VEGI in the over-expression group increased while CD31 and CD34 decreased significantly. In vitro and in vivo, the early apoptosis rate and the apoptosis index were increased within the VEGI over-expression group as compared with the control group.
CONCLUSIONSTaken together, recombinant lentivirus that were successfully constructed, demonstrated up-regulated VEGI gene expression in breast cancer cells. Lentivirus-mediated over-expression of VEGI weakened the ability of the breast cancer cell migration, adhesion and invasion. Over-expression of VEGI diminished the tumorigenic capacity of breast cancer cells in vivo. Up-regulation of VEGI gene expression however inhibited breast cancer MDA-MB-231 cell in the early apoptosis.
Apoptosis ; genetics ; physiology ; Breast Neoplasms ; genetics ; metabolism ; pathology ; Cell Line, Tumor ; Cell Proliferation ; genetics ; physiology ; Female ; Gene Expression Regulation, Neoplastic ; genetics ; physiology ; Genetic Vectors ; genetics ; Humans ; Lentivirus ; genetics ; Vascular Endothelial Growth Factors ; genetics ; metabolism
7.Genetics and Biomarkers of Moyamoya Disease: Significance of RNF213 as a Susceptibility Gene.
Miki FUJIMURA ; Shinya SONOBE ; Yasuo NISHIJIMA ; Kuniyasu NIIZUMA ; Hiroyuki SAKATA ; Shigeo KURE ; Teiji TOMINAGA
Journal of Stroke 2014;16(2):65-72
Moyamoya disease is characterized by a progressive stenosis at the terminal portion of the internal carotid artery and an abnormal vascular network at the base of the brain. Although its etiology is still unknown, recent genome-wide and locus-specific association studies identified RNF213 as an important susceptibility gene of moyamoya disease among East Asian population. A polymorphism in c.14576G>A in RNF213 was identified in 95% of familial patients with moyamoya disease and 79% of sporadic cases, and patients having this polymorphism were found to have significantly earlier disease onset and a more severe form of moyamoya disease, such as the presentation of cerebral infarction and posterior cerebral artery stenosis. The exact mechanism by which the RNF213 abnormality relates to moyamoya disease remains unknown, while recent reports using genetically engineered mice lacking RNF213 by homologous recombination provide new insight for the pathogenesis of this rare entity. Regarding biomarkers of moyamoya disease, moyamoya disease is characterized by an increased expression of angiogenic factors and pro-inflammatory molecules such as vascular endothelial growth factors and matrix metalloproteinase-9, which may partly explain its clinical manifestations of the pathologic angiogenesis, spontaneous hemorrhage, and higher incidence of cerebral hyperperfusion after revascularization surgery. More recently, blockade of these pro-inflammatory molecules during perioperative period is attempted to reduce the potential risk of surgical complication including cerebral hyperperfusion syndrome. In this review article, we focus on the genetics and biomarkers of moyamoya disease, and sought to discuss their clinical implication.
Angiogenesis Inducing Agents
;
Animals
;
Asian Continental Ancestry Group
;
Biomarkers*
;
Brain
;
Carotid Artery, Internal
;
Cerebral Infarction
;
Constriction, Pathologic
;
Genetics*
;
Hemorrhage
;
Homologous Recombination
;
Humans
;
Incidence
;
Matrix Metalloproteinase 9
;
Mice
;
Moyamoya Disease*
;
Neovascularization, Pathologic
;
Perioperative Period
;
Posterior Cerebral Artery
;
Vascular Endothelial Growth Factor A
;
Vascular Endothelial Growth Factors
8.Bone morphogenetic protein-2 gene controls tooth root development in coordination with formation of the periodontium.
Audrey RAKIAN ; Wu-Chen YANG ; Jelica GLUHAK-HEINRICH ; Yong CUI ; Marie A HARRIS ; Demitri VILLARREAL ; Jerry Q FENG ; Mary MACDOUGALL ; Stephen E HARRIS
International Journal of Oral Science 2013;5(2):75-84
Formation of the periodontium begins following onset of tooth-root formation in a coordinated manner after birth. Dental follicle progenitor cells are thought to form the cementum, alveolar bone and Sharpey's fibers of the periodontal ligament (PDL). However, little is known about the regulatory morphogens that control differentiation and function of these progenitor cells, as well as the progenitor cells involved in crown and root formation. We investigated the role of bone morphogenetic protein-2 (Bmp2) in these processes by the conditional removal of the Bmp2 gene using the Sp7-Cre-EGFP mouse model. Sp7-Cre-EGFP first becomes active at E18 in the first molar, with robust Cre activity at postnatal day 0 (P0), followed by Cre activity in the second molar, which occurs after P0. There is robust Cre activity in the periodontium and third molars by 2 weeks of age. When the Bmp2 gene is removed from Sp7(+) (Osterix(+)) cells, major defects are noted in root, cellular cementum and periodontium formation. First, there are major cell autonomous defects in root-odontoblast terminal differentiation. Second, there are major alterations in formation of the PDLs and cellular cementum, correlated with decreased nuclear factor IC (Nfic), periostin and α-SMA(+) cells. Third, there is a failure to produce vascular endothelial growth factor A (VEGF-A) in the periodontium and the pulp leading to decreased formation of the microvascular and associated candidate stem cells in the Bmp2-cKO(Sp7-Cre-EGFP). Fourth, ameloblast function and enamel formation are indirectly altered in the Bmp2-cKO(Sp7-Cre-EGFP). These data demonstrate that the Bmp2 gene has complex roles in postnatal tooth development and periodontium formation.
Actins
;
analysis
;
Activating Transcription Factor 2
;
genetics
;
Age Factors
;
Ameloblasts
;
pathology
;
Amelogenesis
;
genetics
;
Animals
;
Bone Morphogenetic Protein 2
;
genetics
;
Cell Adhesion Molecules
;
analysis
;
Cell Differentiation
;
genetics
;
Cementogenesis
;
genetics
;
Dental Cementum
;
pathology
;
Dental Pulp
;
blood supply
;
Fluorescent Dyes
;
Green Fluorescent Proteins
;
Male
;
Mice
;
Mice, Knockout
;
Microvessels
;
pathology
;
Molar
;
growth & development
;
Molar, Third
;
growth & development
;
NFI Transcription Factors
;
analysis
;
Odontoblasts
;
pathology
;
Odontogenesis
;
genetics
;
Periodontal Ligament
;
growth & development
;
Sp7 Transcription Factor
;
Stem Cells
;
physiology
;
Tooth Root
;
growth & development
;
Transcription Factors
;
genetics
;
Vascular Endothelial Growth Factor A
;
analysis
;
Zinc Fingers
;
genetics
9.Small interference RNA targeting vascular endothelial growth factor gene effectively attenuates retinal neovascularization in mice model.
Yi-chun KONG ; Tianjin Eye INSTITUTE ; Bei SUN ; Kan-xing ZHAO ; Mei HAN ; Yu-chuan WANG
Chinese Medical Journal 2013;126(8):1440-1444
BACKGROUNDThe mechanism of retinal neovascularization is not understood completely. Many growth factors are involved in the process of retinal neovascularization, such as vascular endothelial growth factor (VEGF) and pigment epithelium-deprived factor (PEDF), which are the representatives of angiogenic and antiangiogenic molecules respectively. Oxygen induced retinopathy (OIR) is a useful model to investigate retinal neovascularization. The present study was conducted to investigate the feasibility of small interference RNA (siRNA) targeting VEGF gene in attenuating oxygen induced retinopathy (OIR) by regulating VEGF to PEDF ratio (VEGF/PEDF).
METHODSIn vitro, cultured EOMA cells were transfected with VEGF-siRNA (psi-HI(TM)/EGFP/VEGF siRNA) and Lipofectamine(TM) 2000 for 24, 48, and 72 hours, respectively. Expression of VEGF mRNA was evaluated by real time polymerase chain reaction (PCR) and the level of VEGF protein was analyzed by Western blotting. In vivo, OIR model mice were established, the mice (C57BL/6J) received an intra-vitreal injection of 1 µl of mixture of psi-HI(TM)/EGFP/VEGF siRNA and Lipofectamine 2000. Expressions of retinal VEGF and PEDF protein were measured by Western blotting, retinal neovascularization was observed by fluorescein angiography, and quantified.
RESULTSIn vitro psi-HI(TM)/EGFP/VEGF siRNA treatment significantly reduced VEGF mRNA and protein expression. In vivo, with decreased VEGF and VEGF-PEDF ratio, significant attenuation of neovascular tufts, avascular regions, tortuous, and dilated blood vessels were observed in the interfered animals.
CONCLUSIONSVEGF plays an important role in OIR, and the transfection of VEGF-siRNA can effectively downregulate VEGF expression in vivo, accompanied by the downregulation of VEGF-PEDF ratio, and simultaneous attenuation of retinal neovascularization was also observed. These findings suggest that VEGF/PEDF may serve as a potential target in the treatment of retinal neovascularization and RNA interference targeting VEGF expression, which represents a possible therapeutic strategy.
Animals ; Eye Proteins ; analysis ; Mice ; Mice, Inbred C57BL ; Nerve Growth Factors ; analysis ; RNA, Small Interfering ; genetics ; Retinal Neovascularization ; therapy ; Serpins ; analysis ; Vascular Endothelial Growth Factor A ; analysis ; genetics ; physiology
10.Phosphodiesterase Inhibitor Improves Renal Tubulointerstitial Hypoxia of the Diabetic Rat Kidney.
Hui Kyoung SUN ; Yun Mi LEE ; Kum Hyun HAN ; Han Seong KIM ; Seon Ho AHN ; Sang Youb HAN
The Korean Journal of Internal Medicine 2012;27(2):163-170
BACKGROUND/AIMS: Renal hypoxia is involved in the pathogenesis of diabetic nephropathy. Pentoxifyllin (PTX), a nonselective phosphodiesterase inhibitor, is used to attenuate peripheral vascular diseases. To determine whether PTX can improve renal hypoxia, we investigated its effect in the streptozocin (STZ)-induced diabetic kidney. METHODS: PTX (40 mg/kg, PO) was administered to STZ-induced diabetic rats for 8 weeks. To determine tissue hypoxia, we examined hypoxic inducible factor-1alpha (HIF-1alpha), heme oxygenase-1 (HO-1), vascular endothelial growth factor (VEGF), and glucose transporter-1 (GLUT-1) levels. We also tested the effect of PTX on HIF-1alpha in renal tubule cells. RESULTS: PTX reduced the increased protein creatinine ratio in diabetic rats at 8 weeks. HIF-1alpha, VEGF, and GLUT-1 mRNA expression increased significantly, and the expression of HO-1 also tended to increase in diabetic rats. PTX significantly decreased mRNA expression of HIF-1alpha and VEGF at 4 and 8 weeks, and decreased HO-1 and GLUT-1 at 4 weeks. The expression of HIF-1alpha protein was significantly increased at 4 and 8 weeks in tubules in the diabetic rat kidney. PTX tended to decrease HIF-1alpha protein expression at 8 weeks. To examine whether PTX had a direct effect on renal tubules, normal rat kidney cells were stimulated with CoCl2 (100 microM), which enhanced HIF-1alpha mRNA and protein levels under low glucose conditions (5.5 mM). Their expressions were similar even after high glucose (30 mM) treatment. PTX had no effect on HIF-1alpha expression. CONCLUSIONS: PTX attenuates tubular hypoxia in the diabetic kidney.
Animals
;
Anoxia/*drug therapy/enzymology/etiology/genetics
;
Cell Line
;
Cobalt/pharmacology
;
Diabetes Mellitus, Experimental/*complications
;
Diabetic Nephropathies/*drug therapy/enzymology/etiology/genetics
;
Disease Models, Animal
;
Gene Expression Regulation/drug effects
;
Glucose/metabolism
;
Glucose Transporter Type 1/genetics
;
Heme Oxygenase (Decyclizing)/genetics/metabolism
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics/metabolism
;
Kidney Tubules/*drug effects/enzymology
;
Male
;
Pentoxifylline/*pharmacology
;
Phosphodiesterase Inhibitors/*pharmacology
;
RNA, Messenger/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Streptozocin
;
Time Factors
;
Vascular Endothelial Growth Factor A/genetics

Result Analysis
Print
Save
E-mail