1.Effects of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination on inflammatory responses in atherosclerotic mice.
Wan-Yu LI ; Qing-Yin LONG ; Xin-Ying FU ; Lu MA ; Wei TAN ; Yan-Ling LI ; Shun-Zhou XU ; Wei ZHANG ; Chang-Qing DENG
China Journal of Chinese Materia Medica 2023;48(15):4164-4172
The study aims to observe the effects and explore the mechanisms of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination in the treatment of the inflammatory response of mice with atherosclerosis(AS) via the Toll-like receptor 4(TLR4)/myeloid differentiation primary response protein 88(MyD88)/nuclear factor-κB(NF-κB) signaling pathway. Male ApoE~(-/-) mice were randomly assigned into a model group, a Buyang Huanwu Decoction group, an Astragali Radix-Angelicae Sinensis Radix combination group, and an atorvastatin group, and male C57BL/6J mice of the same weeks old were used as the control group. Other groups except the control group were given high-fat diets for 12 weeks to establish the AS model, and drugs were administrated by gavage. Aortic intimal hyperplasia thickness, blood lipid level, plasma inflammatory cytokine levels, M1/M2 macrophage markers, and expression levels of proteins in TLR4/MyD88/NF-κB pathway in the vessel wall were measured to evaluate the effects of drugs on AS lesions and inflammatory responses. The results showed that the AS model was successfully established with the ApoE~(-/-) mice fed with high-fat diets. Compared with the control group, the model group showed elevated plasma total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c) levels(P<0.05), thickened intima(P<0.01), and increased plasma tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) levels(P<0.01). Moreover, the model group showed increased expression of vascular cell adhesion molecule-1(VCAM-1) and inducible nitric oxide synthase(iNOS)(P<0.01), inhibited expression of endothelial nitric oxide synthase(eNOS) and cluster of differentiation 206(CD206)(P<0.01), and up-regulated mRNA and protein levels of TLR4, MyD88, NF-κB inhibitor alpha(IκBα), and NF-κB in the vessel wall(P<0.05). Compared with the model group, Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination lowered the plasma TC and LDL-c levels(P<0.01), alleviated the intimal hyperplasia(P<0.01), and reduced the plasma TNF-α and IL-6 levels(P<0.05). Moreover, the two interventions promoted the expression of eNOS and CD206(P<0.05), inhibited the expression of VCAM-1 and iNOS(P<0.01), and down-regulated the mRNA and protein levels of TLR4, MyD88, IκBα, and NF-κB(P<0.05) in the vessel wall. This study indicated that Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination could delay the progression of AS, inhibit the polarization of vascular wall macrophages toward M1 type, and attenuate vascular inflammatory response by inhibiting the activation of TLR4/MyD88/NF-κB signaling pathway in the vascular wall. Astragali Radix and Angelicae Sinensis Radix were the main pharmacological substances in Buyang Huanwu Decoction for alleviating the AS vascular inflammatory response.
Mice
;
Male
;
Animals
;
NF-kappa B/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Cholesterol, LDL
;
Hyperplasia
;
Mice, Inbred C57BL
;
Atherosclerosis/genetics*
;
Apolipoproteins E/therapeutic use*
;
RNA, Messenger
2.Mechanism of total flavonoids of Ziziphora clinopodioides in improving atherosclerosis by regulating PI3K/Akt/mTOR pathway.
Xiao-Yu MA ; Hao-Ran ZHAO ; Hui-Lin QIAO ; You-Cheng ZENG ; Xuan-Ming ZHANG
China Journal of Chinese Materia Medica 2023;48(2):465-471
The present study observed the regulatory effect of total flavonoids of Ziziphora clinopodioides on autophagy and the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) signaling pathways in ApoE~(-/-) mice and explored the mechanism of total flavonoids of Z. clinopodioides against atherosclerosis(AS). ApoE~(-/-) mice were fed on a high-fat diet for eight weeks to induce an AS model. The model mice were randomly divided into a model group, a positive control group, and low-, medium-and high-dose groups of total flavonoids of Z. clinopodioides, while C57BL/6J mice fed on a common diet were assigned to the blank group. The serum and aorta samples were collected after intragastric administration for 12 weeks, and the serum levels of total cholesterol(TC), triglyceride(TG), low density lipoprotein-cholesterol(LDL-C), and high density lipoprotein-cholesterol(HDL-C) were detected by an automatic biochemical analyzer. The serum expression levels of intercellular adhesion molecule-1(ICAM-1), vascular cell adhesion molecule-1(VCAM-1), matrix metalloproteinase-2(MMP-2), and matrix metalloprotei-nase-9(MMP-9) were detected by enzyme-linked immunosorbent assay(ELISA). Oil red O staining was used to observe the aortic plaque area in mice. Hematoxylin-eosin(HE) staining was used to observe the aortic plaque and pathological changes in mice. The expression of P62 and LC3 in the aorta was detected by the immunofluorescence method. The protein expression of LC3Ⅱ/Ⅰ, Beclin-1, P62, p-PI3K, p-Akt, and p-mTOR in the aorta of mice was detected by Western blot. The results showed that compared with the blank group, the serum levels of TC, TG, LDL-C, ICAM-1, VCAM-1, MMP-2 and MMP-9 in the model group were significantly increased(P<0.01 or P<0.05), the content of HDL-C was decreased(P<0.05), intra-aortic plaque area was enlarged(P<0.01), the expression of LC3 in the aorta was significantly down-regulated, P62 expression was up-regulated(P<0.01 or P<0.05), the expressions of LC3Ⅱ/Ⅰ and Beclin-1 in the aortic lysate were significantly down-regulated, and the expressions of p-PI3K, p-Akt, p-mTOR and P62 were significantly increased(P<0.01). The medium-and high-dose groups of total flavonoids of Z. clinopodioides could reduce the serum levels of TC, TG, LDL-C, ICAM-1, VCAM-1, MMP-2, and MMP-9 in AS model mice(P<0.01 or P<0.05), and increase the content of HDL-C(P<0.01 or P<0.05). The aortic plaque area of mice after middle and high doses of total flavonoids of Z. clinopodioides was significantly reduced(P<0.01), the content of foam cells decrease, and the narrowing of the lumen decreased. The total flavonoids of Z. clinopodioides significantly increased the expression of LC3 in the aorta and the expression of LC3Ⅱ/Ⅰ and Beclin-1 in the lysate, and decreased the expression of P62 in the aorta and the expression of p-PI3K, p-Akt, p-mTOR and P62 in the lysate(P<0.01 or P<0.05). The results showed that the total flavonoids of Z. clinopodioides could improve the content of blood lipids and inflammatory factors, and reduce the generation of foam cells and plaques in aortic tissue, and the mechanism may be related to the regulation of PI3K/Akt/mTOR signaling pathway.
Animals
;
Mice
;
Apolipoproteins E
;
Atherosclerosis/genetics*
;
Beclin-1
;
Cholesterol, LDL
;
Intercellular Adhesion Molecule-1
;
Matrix Metalloproteinase 2/genetics*
;
Matrix Metalloproteinase 9/genetics*
;
Mice, Inbred C57BL
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Plaque, Atherosclerotic
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/genetics*
;
Vascular Cell Adhesion Molecule-1/genetics*
3.Hydroxysafflor yellow A attenuate lipopolysaccharide-induced endothelium inflammatory injury.
Ming JIN ; Chun-Yan SUN ; Bao-Xia ZANG
Chinese journal of integrative medicine 2016;22(1):36-41
OBJECTIVEThis study observed attenuating effect of hydroxysafflor yellow A (HSYA), an effective ingredient of aqueous extract of Carthamus tinctorius L, on lipopolysaccharide (LPS)-induced endothelium inflammatory injury.
METHODSEahy926 human endothelium cell (EC) line was used; thiazolyl blue tetrazolium bromide (MTT) test was assayed to observe the viability of EC; Luciferase reporter gene assay was applied to measure nuclear factor-κB (NF-κB) p65 subunit nuclear binding activity in EC; Western blot technology was used to monitor mitogen activated protein kinase (MAPKs) and NF-κB activation. Reverse transcription polymerase chain reaction (RT-PCR) method was applied to observe intercellular cell adhesion molecule-1 (ICAM-1) and E-selectin mRNA level; EC surface ICAM-1 expression was measured with flow cytometry and leukocyte adhesion to EC was assayed with Rose Bengal spectrophotometry technology.
RESULTSHSYA protected EC viability against LPS-induced injury (P <0.05). LPS-induced NF-κB p65 subunit DNA binding (P <0.01) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor α (IκBα) phosphorylation was inhibited by HSYA. HSYA attenuated LPS triggered ICAM-1 and E-selectin mRNA levels elevation and phosphorylation of p38 MAPK or c-Jun N-terminal kinase MAPK. HSYA also inhibited LPS-induced cell surface ICAM-1 protein expression P <0.01) and leukocyte adhesion to EC (P <0.05).
CONCLUSIONHSYA is effective to protect LPS-induced high expression of endothelium adhesive molecule and inflammatory signal transduction.
Cell Adhesion ; drug effects ; Cell Nucleus ; drug effects ; metabolism ; Cell Survival ; drug effects ; Chalcone ; analogs & derivatives ; chemistry ; pharmacology ; therapeutic use ; E-Selectin ; genetics ; metabolism ; Endothelium, Vascular ; drug effects ; pathology ; Gene Expression Regulation ; drug effects ; Human Umbilical Vein Endothelial Cells ; drug effects ; metabolism ; pathology ; Humans ; I-kappa B Proteins ; metabolism ; Inflammation ; drug therapy ; pathology ; Intercellular Adhesion Molecule-1 ; genetics ; metabolism ; Leukocytes ; cytology ; drug effects ; Lipopolysaccharides ; MAP Kinase Signaling System ; drug effects ; NF-KappaB Inhibitor alpha ; Phosphorylation ; drug effects ; Protective Agents ; pharmacology ; Protein Binding ; drug effects ; Quinones ; chemistry ; pharmacology ; therapeutic use ; RNA, Messenger ; genetics ; metabolism
4.Extracellular signal-regulated kinase signaling pathway regulates the endothelial differentiation of periodontal ligament stem cells.
Hong ZHU ; Lankun LUO ; Ying WANG ; Jun TAN ; Peng XUE ; Qintao WANG
Chinese Journal of Stomatology 2016;51(3):154-159
OBJECTIVETo investigate the effect of extracellular signal-regulated kinase (ERK) signaling pathway on the endothelial differentiation of periodontal ligament stem cells (PDLSC).
METHODSHuman PDLSC was cultured in the medium with vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF) to induce endothelial differentiation. Endothelial inducing cells was incubated with U0126, a specific p-ERK1/2 inhibitor. PDLSC from one person were randomly divided into four groups: control group, endothelial induced group, endothelial induced+DMSO group and endothelial induced+U0126 group. The protein expression of the p-EKR1/2 was analyzed by Western blotting at 0, 1, 3, 6 and 12 hours during endonthelial induction. The mRNA expressions of CD31, VE-cadherin, and VEGF were detected by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) after a 7-day induction. The proportion of CD31(+) to VE-cadherin(+) cells was identified by flow cytometry, and the ability of capillary-like tubes formation was detected by Matrigel assay after a 14-day induction. The measurement data were statistically analyzed.
RESULTSPhosphorylated ERK1/2 protein level in PDLSC was increased to 1.24±0.12 and 1.03±0.24 at 1 h and 3 h respectively, during the endothelial induction (P<0.01). The mRNA expressions of CD31 and VEGF in induced+U0126 group were decreased to 0.09±0.18 and 0.49±0.17, which were both significantly different with those in induced group (P<0.05). The proportion of CD31(+) to VE-cadherin(+) cells of induced+U0126 group were decreased to 5.22±0.85 and 3.56±0.87, which were both significantly different with those in induced group (P<0.05). In Matrigel assay, the branching points, tube number and tube length were decreased to 7.0±2.7, 33.5±6.4, and (15 951.0±758.1) pixels, which were all significantly different with those in induced group (P<0.05).
CONCLUSIONSThe endothelial differentiation of PDLSC is positively regulated by ERK signaling pathway. Inhibition of ERK1/2 phosphorylation could suppress endothelial differentiation of PDLSC.
Antigens, CD ; genetics ; metabolism ; Butadienes ; pharmacology ; Cadherins ; genetics ; metabolism ; Cell Differentiation ; Endothelial Cells ; cytology ; physiology ; Enzyme Inhibitors ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; physiology ; Fibroblast Growth Factor 2 ; pharmacology ; Humans ; Mitogen-Activated Protein Kinase 3 ; antagonists & inhibitors ; metabolism ; Nitriles ; pharmacology ; Periodontal Ligament ; cytology ; metabolism ; Phosphorylation ; Platelet Endothelial Cell Adhesion Molecule-1 ; genetics ; metabolism ; RNA, Messenger ; metabolism ; Random Allocation ; Signal Transduction ; Stem Cells ; cytology ; physiology ; Time Factors ; Vascular Endothelial Growth Factor A ; genetics ; metabolism ; pharmacology
5.L-tetrahydropalamatine inhibits tumor necrosis factor-α-induced monocyte-endothelial cell adhesion through downregulation of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 involving suppression of nuclear factor-κ B signaling pathway.
Bin-rui YANG ; Nan YU ; Yan-hui DENG ; Pui Man HOI ; Bin YANG ; Guang-yu LIU ; Wei-hong CONG ; Simon Ming-yuen LEE
Chinese journal of integrative medicine 2015;21(5):361-368
OBJECTIVETo investigate whether I-tetrahydropalmatine (I-THP), an alkaloid mainly present in Corydalis family, could ameliorate early vascular inflammatory responses in atherosclerotic processes.
METHODSFluorescently labeled monocytes were co-incubated with human umbilical vein endothelial cells (HUVECs), which were pretreated with I-THP and then simulated with tumor necrosis factor (TNF)-α in absence of I-THP to determine if I-THP could reduce thecytokine-induced adhesion of monocytes to HUVECs. Then I-THP were further studied the underlying mechanisms through observing the transcriptional and translational level of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and the nuclear translocation of nuclear factor (NF)-κ B in HUVECs.
RESULTSL-THP could block TNF-α-induced adhesion of monocytes to HUVECs and could significantly inhibited the expression of ICAM-1 and VCAM-1 on cell surface by 31% and 36% at 30 μ mol/L. L-THP pretreatment could also markedly reduce transcriptional and translational level of VCAM-1 as well as mildly reduce the total protein and mRNA expression levels of ICAM-1. Furthermore, I-THP attenuated TNF-α-stimulated NF-κ B nuclear translocation.
CONCLUSIONThese results provide evidences supporting that I-THP could be a promising compound in the prevention and treatment of the early vascular inflammatory reaction in atherosclerosis by inhibiting monocyte adhesion to vascular endothelial cell through downregulating ICAM-1 and VCAM-1 in vascular endothelial cell based on suppressing NF-κ B.
Berberine Alkaloids ; pharmacology ; Cell Adhesion ; drug effects ; Cell Nucleus ; drug effects ; metabolism ; Down-Regulation ; drug effects ; Human Umbilical Vein Endothelial Cells ; cytology ; drug effects ; metabolism ; Humans ; Intercellular Adhesion Molecule-1 ; genetics ; metabolism ; Monocytes ; cytology ; drug effects ; metabolism ; NF-kappa B ; metabolism ; Protein Transport ; drug effects ; RNA, Messenger ; genetics ; metabolism ; Signal Transduction ; drug effects ; Transcription Factor RelA ; metabolism ; Tumor Necrosis Factor-alpha ; pharmacology ; Vascular Cell Adhesion Molecule-1 ; genetics ; metabolism
6.Effect of dangua recipe on glycolipid metabolism and VCAM-1 and its mRNA expression level in Apo E(-/-) mice with diabetes mellitus.
Xian-Pei HENG ; Liang LI ; Su-Ping HUANG ; Yan CHEN ; Miao-Xian LIN ; Huai-Shan ZHUANG ; Qun-Fang YAN ; Liu-Qing YANG ; Ling CHEN ; Qing LIN ; Xin-Ling CHENG ; Min-Ling CHEN ; Yi-Chu CHEN ; Yuan-Long LAN ; Zhi-Ta WANG ; Shu-Hong YAO ; Zhi-San ZHANG
Chinese Journal of Integrated Traditional and Western Medicine 2014;34(9):1086-1095
OBJECTIVETo study the effect of Dangua Recipe (DGR) on glycolipid metabolism, vascular cell adhesion molecule-1 (VCAM-1) and its mRNA expression level of transgenic Apo E(-/-) mouse with spontaneous atherosclerosis, thus revealing its partial mechanism for curing diabetes mellitus (DM) with angiopathy.
METHODSDiabetic model was prepared by peritoneally injecting streptozotocin (STZ) to Apo E(-/-) mouse. Totally 32 modeled mice were stratified by body weight, and then divided into 4 groups referring to blood glucose levels from low to high by random digit table, i.e., the model group (MOD, fed with sterile water, at the daily dose of 15 mL/kg), the DGR group (fed with DGR at the daily dose of 15 mL/kg), the combination group (COM, fed with DGR at the daily dose of 15 mL/kg and pioglitazone at the daily dose of 4.3 mg/kg), and the pioglitazone group (PIO, at the daily dose of 4.3 mg/kg), 8 in each group. Another 8 normal glucose C57 mouse of the same age and strain were recruited as the control group. All interventions lasted for 12 weeks by gastrogavage. The fasting blood glucose (FBG), body weight, food intake, water intake, skin temperature, the length of tail, and the degree of fatty liver were monitored. The hemoglobin A1c (HbA1c), total cholesterol (TC), and LDL-C were determined. Endothelin-1 (ET-1) was determined by radioimmunoassay. Nitrogen monoxidum (NO) was determined by nitrate reductase. The kidney tissue VCAM-1 level was analyzed with ELISA. The expression of VCAM-1 mRNA in the kidney tissue was detected with real time quantitative PCR.
RESULTSCompared with the control group, the body weight and food intake decreased, water intake increased in all the other model groups (P < 0.05). Besides, the curve of blood glucose was higher in all the other model groups than in the control group (P < 0.01). Compared with the model group, the body weight increased; levels of HbAlc, TC, LDL-C, ET-1, and VCAM-1 were significantly lower; and skin temperature was higher in the DGR group (P < 0.05, P < 0.01). Compared with the PIO group, body weight, the increment of body weight, FBG, TC, and LDL-C were lower (P < 0.05, P < 0.01); food intake and water intake increased more and the tail length was longer in the DRG group (P < 0.01). There was no statistical difference in the level of NO among groups. The degree of fatty liver in the model group was significantly severer than that in the control group (P < 0.05). It was obviously alleviated in the DGR group (P < 0.05) when compared with the model group and the PIO group (P < 0.05, P < 0.01). But it was severer in the PIO group than in the model group (P < 0.01). The degree of fatty liver in the combination group ranged between that of the DGR group and the PIO group (P < 0.05). The level of VCAM-1 mRNA expression was significantly lower in the DGR group than in the model group, the PIO group, and the combination group (P < 0.05).
CONCLUSIONSDGR had effect in lowering blood glucose and blood lipids, and fighting against fatty liver of transgenic Apo E(-/-) mouse with spontaneous atherosclerosis. DGR played an effective role in preventing and treating DM with angiopathy by comprehensively regulating glycolipid metabolism and promoting the vascular function.
Animals ; Apolipoproteins E ; genetics ; Blood Glucose ; metabolism ; Diabetes Mellitus, Experimental ; blood ; drug therapy ; Diabetic Angiopathies ; drug therapy ; Drugs, Chinese Herbal ; pharmacology ; Lipids ; blood ; Male ; Mice ; Mice, Knockout ; RNA, Messenger ; genetics ; Random Allocation ; Thiazolidinediones ; pharmacology ; Vascular Cell Adhesion Molecule-1 ; genetics ; metabolism
7.Gene-targeted radiation therapy mediated by radiation-sensitive promoter in lung adenocarcinoma and the feasibility of micro-PET/CT in evaluation of therapeutic effectiveness in small animals.
Haoping XU ; Rui GUO ; Yening JIN ; Biao LI
Chinese Journal of Oncology 2014;36(5):329-334
OBJECTIVETo explore the combined anti-tumor effect of radiation therapy and gene-targeted suppression of tumor neovasculature in lung adenocarcinoma in vivo, and to explore the feasibility of micro-PET/CT in dynamic evaluation of treatment effectiveness.
METHODSThirty 5-6-week old male BALB/c nude mice were used in this study. The mouse models of xenotransplanted human lung adenocarcinoma were divided into 5 groups at random, six mice in each group: the control group, radiation treatment alone group and three groups of recombinant baculovirus plus radiation treatment (intratumoral injection, tail vein injection, and intramuscular injection). The tumor volume was measured every 2 days. Growth delay time (GD) and growth inhibition rate was calculated. FDG metabolism was evaluated by micro-PET-CT before and after treatment. The expressions of VEGF, CD31 and Ki-67 were detected by immunohistochemistry (IHC).
RESULTSThe tumor growth delay was >12 days, and the tumor inhibition rate was >45% in the recombinant baculovirus combined with radiotherapy groups, significantly higher than that of the radiotherapy alone group (P < 0.05). Immunohistochemical analysis showed that the expressions of VEGF, CD31 and Ki-67 were significantly lower than that in other groups (P < 0.05). The micro-PET-CT assessment showed that the FDG-metabolism in the recombinant baculovirus combined with radiotherapy groups was significantly reduced (P < 0.05), and the SUVmax (FDG metabolism) of transplanted tumors after treatment was also markedly decreased in comparison with that of the control group. The tumor volume after treatment was significantly correlated with SUVmax in the recombinant baculovirus intratumoral injection + radiotherapy group(r = 0.976), recombinant baculovirus intravenous injection + radiotherapy group (r = 0.954), recombinant baculovirus intramuscular injection + radiotherapy group (r = 0.929), and radiotherapy alone group (r = 0.871, P < 0.05).
CONCLUSIONSThe recombinant baculovirus containing Egr1 promoter and K5 gene combined with radiotherapy enhances the suppressing effect on the growth of lung adenocarcinoma in the tumor-bearing nude mice. The inducibility of Egr1 promoter by radiation allows the targeting and controllability of treatment. Micro-PET-CT results have a good correlation with the treatment effectiveness. Therefore, it can be used in real-time evaluation of tumor metabolic function in vivo.
Adenocarcinoma ; metabolism ; pathology ; radiotherapy ; Animals ; Baculoviridae ; genetics ; Cell Line, Tumor ; Combined Modality Therapy ; Early Growth Response Protein 1 ; genetics ; physiology ; Fluorodeoxyglucose F18 ; Genetic Therapy ; Genetic Vectors ; Humans ; Ki-67 Antigen ; metabolism ; Lung Neoplasms ; metabolism ; pathology ; radiotherapy ; Male ; Mice, Inbred BALB C ; Mice, Nude ; Molecular Targeted Therapy ; Neoplasm Transplantation ; Peptide Fragments ; genetics ; physiology ; Plasminogen ; genetics ; physiology ; Platelet Endothelial Cell Adhesion Molecule-1 ; metabolism ; Positron-Emission Tomography ; Promoter Regions, Genetic ; Random Allocation ; Recombinant Proteins ; genetics ; Tomography, X-Ray Computed ; Tumor Burden ; Vascular Endothelial Growth Factor A ; metabolism
8.Construction of mouse VCAM-1 expression vector and establishment of stably transfected MSC line C3H10T1/2.
Hui CHEN ; ; Heng ZHU ; Ya-Nan CHU ; Fen-Fen XU ; Yuan-Lin LIU ; Bo TANG ; Xi-Mei LI ; Liang-Ding HU ; Yi ZHANG
Journal of Experimental Hematology 2014;22(5):1396-1401
This study was aimed to construct the mouse VCAM-1 expression vector, to establish the stably transfected MSC line and to investigate the effect of VCAM-1-modified mesenchymal stem cells (MSC) on the immunological characteristics of MSC. The cDNA of murine VCAM-1 gene was amplified by RT-PCR from the total RNA isolated from the mouse spleen; then the cDNA was inserted into the retrovirus vector PMSCVmigr-1; the recombinant plasmid was confirmed by restriction endonuclease experiments and sequencing, then designated as PMSCVmigr-1-mVCAM-1; the recombinant plasmid PMSCVmigr-1-mVCAM-1 was transfected into 293 cells by lipofecamin and the supernatant was collected to transfect MSC cell line (C3H10T1/2). Moreover, VCAM-1 expression on MSC was evaluated by FACS. Furthermore, the inhibitory effect of VCAM-1-MSC on lymphocytic transformation was tested by (3)H-TdR incorporation assay. The results indicated that the successful construction of recombinant retroviral expression plasmid of mouse VCAM-1 was confirmed by digesting and sequancing. After transfection of MSC with retroviral supernaptant, the high expression of VCAM-1 on MSC could be detected by flow cytometry. The MSC high expressing VCAM-1 could significantly inhibit the proliferation of Con A-inducing lymphocytes in dose-depentent marrer. It is concluded that recombinant retroviral encoding VCAM-1 (PMSCVmigr-1-mVCAM-1) has been successfully constructed and mouse VCAM-1 has been stably expressed in C3H10T1/2. MSC over-expressing VCAM-1 show more potent immunosuppressive effect on cellular immune reaction in vitro. Our data laid a foundation for the subsequent studying the effect of VCAM-1 transfecting into MSC on immune related disease study.
Animals
;
Cell Line
;
DNA, Complementary
;
Genetic Vectors
;
Mesenchymal Stromal Cells
;
metabolism
;
Mice
;
Retroviridae
;
Reverse Transcriptase Polymerase Chain Reaction
;
Transfection
;
Vascular Cell Adhesion Molecule-1
;
genetics
9.Protective effect of mailuoning injection on cerebral ischemia/reperfusion injury in rats and its mechanism.
Xiao-Bin PANG ; Xin-Mei XIE ; Hai-Yan WANG ; Bao-Quan WANG
China Journal of Chinese Materia Medica 2014;39(4):721-725
OBJECTIVETo discuss the protective effect of Mailuoning injection on ischemia/reperfusion (I/R) injury in rats and its mechanism.
METHODHealthy male adult Sprague-Dawley (SD) rats were randomly divided into the sham operation group, the model group, the edaravone (3 mg x kg(-1)) control group, and Mailuoning high, middle and low-dose groups (4, 2, 1 mL x kg(-1)), with 10 rats in each group, and administered with drugs through tail intravenous injection. The middle cerebral artery occlusion (MCAO) was adopted to establish the rat ischemia/reperfusion model. After the ischemia for 2 h and reperfusion for 24 h, the pathological changes in neurovascular units (NVU) of brain tissues at the ischemia side was observed by HE staining. The expressions of glialfibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (Ibal) were detected by the immunohistochemical method. The expressions of tumor necrosis factor-alpha (TNF-alpha), interleukin 1beta (IL-1beta), vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were detected by the western blotting technique.
RESULTMailuoning injection could significantly improve the pathological changes in cortical penumbra brain tissue UVN of (I/R) rats, reduce the number of GFAP and Ibal positive cells, and significantly decrease the expressions of TNF-alpha, IL-1beta, VCAM-1 and ICAM-1 of brain tissues of I/R rats.
CONCLUSIONMailuoning injection shows an obvious protective effect on UVN of I/R rats. Its mechanism may involve the inhibition of the activation of astrocyte and microglia and the secretion and expression of various inflammatory factors.
Animals ; Brain ; drug effects ; metabolism ; Brain Ischemia ; surgery ; Drugs, Chinese Herbal ; administration & dosage ; Humans ; Infarction, Middle Cerebral Artery ; genetics ; metabolism ; Intercellular Adhesion Molecule-1 ; genetics ; metabolism ; Male ; Protective Agents ; administration & dosage ; Rats ; Rats, Sprague-Dawley ; Reperfusion Injury ; genetics ; metabolism ; prevention & control ; Tumor Necrosis Factor-alpha ; genetics ; metabolism ; Vascular Cell Adhesion Molecule-1 ; genetics ; metabolism
10.Comparison and analysis between CLL-hBMSC and N-hBMSC.
Huan WANG ; Jun ZHOU ; Jing-Jing XU ; Feng GUO
Journal of Experimental Hematology 2014;22(4):914-919
This study was purpose to compare and analyze the chronic lymphocytic leukemia human bone marrow stromal cells (CLL-hBMSC) and normal hBMSC (N-hBMSC) so as to provide theoretical evidence for establishment of CLL-hBMSC interaction model to imitate CLL microenvironment. Mononuclear cells (MNC) were isolated from bone marrow of CLL patients and healthy donors and then were cultured, hBMSC were established by expanding for at least five passages. The mRNA expression of adhesion molecules, such as vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), was analyzed by real-time PCR. The mRNA and protein expression of lymphotoxin beta receptor (LTβR) were determined by real-time PCR and Western blot, respectively. The individual NF-κB members at protein level of CLL-hBMSC and N-hBMSC were examined by Western blot. The effect of LTα1β2 on individual NF-κB family members at protein level in CLL-hBMSC and N-hBMSC was also examined by Western blot. The death of CLL cells was determined by flow cytometry with PI staining when cultured with or without CLL-hBMSC and N-hBMSC at different time points. The results showed that the hBMSC could be established successfully from bone marrow of CLL patients, which were similar to N-hBMSC. Adhesion molecules, such as VCAM-1 and ICAM-1, were found to be expressed at similar mRNA levels in CLL-hBMSC and N-hBMSC. LTβR expressions at mRNA and protein levels were comparable between CLL-hBMSC and N-hBMSC. The protein expression of the individual NF-κB family members could be detected in CLL-hBMSC and N-hBMSC with similar expression levels. LTα1β2 stimulation activated both the classical ( RelA/p50 ) and alternative ( RelB/p52 ) NF-κB complexes in CLL-hBMSC and N-hBMSC. The capacities of CLL-hBMSC and N-hBMSC to protect CLL cell survival were similar. It is concluded that there is no statistical difference between bone marrow from healthy donors and CLL patients in the efficiency of generating of hBMSC. LTβR-NF-κB signaling molecules are expressed and activated on hBMSC with a similar pattern.
Humans
;
Intercellular Adhesion Molecule-1
;
metabolism
;
Leukemia, Lymphocytic, Chronic, B-Cell
;
genetics
;
metabolism
;
pathology
;
Lymphotoxin beta Receptor
;
metabolism
;
Mesenchymal Stromal Cells
;
cytology
;
metabolism
;
Signal Transduction
;
Transcription Factor RelA
;
metabolism
;
Transcription Factor RelB
;
metabolism
;
Vascular Cell Adhesion Molecule-1
;
metabolism

Result Analysis
Print
Save
E-mail