1.Herpes Zoster DNA Vaccines with IL-7 and IL-33 Molecular Adjuvants Elicit Protective T Cell Immunity.
A Reum KIM ; Junsik PARK ; Jong Hoon KIM ; Jeong Eun KWAK ; Youngran CHO ; Hyojin LEE ; Moonsup JEONG ; Su Hyung PARK ; Eui Cheol SHIN
Immune Network 2018;18(5):e38-
Herpes zoster (HZ), or shingles, is caused by the reactivation of latent varicella-zoster virus (VZV) from the sensory ganglia when VZV-specific T-cell immunity is decreased because of aging or immunosuppression. In the present study, we developed HZ DNA vaccine candidates encoding VZV proteins and cytokine adjuvants, such as IL-7 and IL-33. We immunized C57BL/6 mice with DNA plasmids encoding VZV glycoprotein E (gE), immediate early (IE) 63, or IE62 proteins and found that robust VZV protein-specific T-cell responses were elicited by HZ DNA vaccination. Co-administration of DNA plasmids encoding IL-7 or IL-33 in HZ DNA vaccination significantly enhanced the magnitude of VZV protein-specific T-cell responses. Protective immunity elicited by HZ DNA vaccination was proven by challenge experiments with a surrogate virus, vaccinia virus expressing gE (VV-gE). A single dose of HZ DNA vaccine strongly boosted gE-specific T-cell responses in mice with a history of previous infection by VV-gE. Thus, HZ DNA vaccines with IL-7 and IL-33 adjuvants strongly elicit protective immunity.
Aging
;
Animals
;
DNA*
;
Ganglia, Sensory
;
Glycoproteins
;
Herpes Zoster*
;
Herpesvirus 3, Human
;
Immunosuppression
;
Interleukin-33*
;
Interleukin-7*
;
Mice
;
Plasmids
;
T-Lymphocytes
;
Vaccination
;
Vaccines, DNA*
;
Vaccinia virus
2.Vanilloid Receptor 1 Agonists, Capsaicin and Resiniferatoxin, Enhance MHC Class I-restricted Viral Antigen Presentation in Virus-infected Dendritic Cells.
Young Hee LEE ; Sun A IM ; Ji Wan KIM ; Chong Kil LEE
Immune Network 2016;16(4):233-241
DCs, like the sensory neurons, express vanilloid receptor 1 (VR1). Here we demonstrate that the VR1 agonists, capsaicin (CP) and resiniferatoxin (RTX), enhance antiviral CTL responses by increasing MHC class I-restricted viral antigen presentation in dendritic cells (DCs). Bone marrow-derived DCs (BM-DCs) were infected with a recombinant vaccinia virus (VV) expressing OVA (VV-OVA), and then treated with CP or RTX. Both CP and RTX increased MHC class I-restricted presentation of virus-encoded endogenous OVA in BM-DCs. Oral administration of CP or RTX significantly increased MHC class I-restricted OVA presentation by splenic and lymph node DCs in VV-OVA-infected mice, as assessed by directly measuring OVA peptide SIINFEKL-Kb complexes on the cell surface and by performing functional assays using OVA-specific CD8 T cells. Accordingly, oral administration of CP or RTX elicited potent OVA-specific CTL activity in VV-OVA-infected mice. The results from this study demonstrate that VR1 agonists enhance anti-viral CTL responses, as well as a neuro-immune connection in anti-viral immune responses.
Administration, Oral
;
Animals
;
Antigen Presentation*
;
Capsaicin*
;
Dendritic Cells*
;
Lymph Nodes
;
Mice
;
Ovum
;
Sensory Receptor Cells
;
T-Lymphocytes
;
Vaccinia virus
3.Construction and Function Verification of a Novel Shuttle Vector Containing a Marker Gene Self-deletion System.
Lili LI ; Zhan WANG ; Yubai ZHOU ; Fang ZHANG ; Sisi SHEN ; Zelin LI ; Yi ZENG
Chinese Journal of Virology 2015;31(5):507-514
For rapid and accurate screening of recombinant modified vaccinia virus Ankara (rMVA) that satisfied the quality standards of clinical trials, a novel shuttle vector that can delete the marker gene automatically during virus propagation was construted: pZL-EGFP. To construct the pZL-EGFP, the original shuttle vector pSC11 was modified by replacing the LacZ marker gene with enhanced green fluorescent protein (EGFP) and then inserting homologous sequences of TKL into the flank regions of EGFP. Baby hamster kidney (BHK)-21 cells were cotransfected with pZL-EGFP and MVA, and underwent ten passages and one plaque screening to obtain the EGFP-free rMVA carrying the exogenous gene. Resulting rMVA was tested by polymerase chain reaction and western blotting to verify pZL-EGFP function. A novel shuttle vector pZL-EGFP containing an EGFP marker gene which could be deleted automatically was constructed. This gene deletion had no effect on the activities of rMVA, and the exogenous gene could be expressed stably. These results suggest that rMVA can be packaged efficiently by homologous recombination between pZL-EGFP and MVA in BHK-21 cells, and that the carried EGFP gene can be removed automatically by intramolecular homologous recombination during virus passage. Meanwhile, the gene deletion had no influence on the activities of rMVA and the expression of exogenous target gene. This study lays a solid foundation for the future research.
Animals
;
Biomarkers
;
Cricetinae
;
Epithelial Cells
;
virology
;
Gene Deletion
;
Genetic Engineering
;
methods
;
Genetic Vectors
;
genetics
;
metabolism
;
Green Fluorescent Proteins
;
genetics
;
metabolism
;
Humans
;
Recombination, Genetic
;
Vaccinia
;
virology
;
Vaccinia virus
;
genetics
;
physiology
;
Virus Replication
4.Immune control strategies for vaccinia virus-related laboratory-acquired infections.
Qiang WEI ; Meng Nan JIANG ; Jun HAN ; Zi Jun WANG
Biomedical and Environmental Sciences 2014;27(2):142-146
While presenting biological characteristics of vaccinia virus and laboratory-acquired infections during related research processes, this paper focuses on benefits and risks of vaccinia virus immunization in relation to laboratory-acquired infections, describes characteristics and the adaptation of vaccinia virus vaccine, analyses the role vaccinia virus immunization plays in the prevention and control of laboratory-acquired infections, and finally proposes solutions and countermeasures to further promote and implement immune control strategies. The problem related to immune strategy and laboratory- acquired infections which is being raised, analyzed and explored plays an active and instructive role in vaccinia virus related researches and laboratory- acquired infections, and also helps to recommend and develop relevant immune strategy for future vaccine control of such infections.
Contraindications
;
Humans
;
Smallpox Vaccine
;
adverse effects
;
Vaccination
;
standards
;
Vaccinia
;
immunology
;
prevention & control
;
Vaccinia virus
;
immunology
5.Relationship between Poor Immunogenicity of HLA-A2-Restricted Peptide Epitopes and Paucity of Naive CD8+ T-Cell Precursors in HLA-A2-Transgenic Mice.
Yoon Seok CHOI ; Dong Ho LEE ; Eui Cheol SHIN
Immune Network 2014;14(4):219-225
We examined the immunogenicity of H-2 class I-restricted and HLA-A2-restricted epitopes through peptide immunization of HLA-A2-transgenic mice that also express mouse H-2 class I molecules. All four of the tested epitopes restricted by H-2 class I robustly elicited T-cell responses, but four of seven epitopes restricted by HLA-A2 did not induce T-cell responses, showing that HLA-A2-restricted peptide epitopes tend to be poorly immunogenic in HLA-A2-transgenic mice. This finding was confirmed in HLA-A2-transgenic mice infected with a recombinant vaccinia virus expressing hepatitis C virus proteins. We examined the precursor frequency of epitope-specific naive CD8+ T cells in HLA-A2-transgenic and conventional C57BL/6 mice and found that the poor immunogenicity of HLA-A2-restricted peptide epitopes is related to the paucity of naive CD8+ T-cell precursors in HLA-A2-transgenic mice. These results provide direction for the improvement of mouse models to study epitope repertoires and the immunodominance of human T-cell responses.
Animals
;
Epitopes*
;
Epitopes, T-Lymphocyte
;
Hepacivirus
;
HLA-A2 Antigen
;
Humans
;
Immunization
;
Mice*
;
Precursor Cells, T-Lymphoid*
;
T-Lymphocytes
;
Vaccinia virus
6.A novel immunization strategy to induce strong humoral responses against HIV-1 using combined DNA, recombinant vaccinia virus and protein vaccines.
Chang LIU ; Shu-hui WANG ; Li REN ; Yan-ling HAO ; Qi-cheng ZHANG ; Ying LIU
Chinese Journal of Virology 2014;30(6):645-651
To optimize the immunization strategy against HIV-1, a DNA vaccine was combined with a recombinant vaccinia virus (rTV) vaccine and a protein vaccine. Immune responses against HIV-1 were detected in 30 female guinea pigs divided into six groups. Three groups of guinea pigs were primed with HIV-1 DNA vaccine three times, boosted with rTV at week 14, and then boosted with gp140 protein at intervals of 4, 8 or 12 weeks. Simultaneously, the other three groups of animals were primed with rTV vaccine once, and then boosted with gp140 after 4, 8 or 12 weeks. The HIV-1 specific binding antibody and neutralizing antibody, in addition to the relative affinity of these antibodies, were detected at different time points after the final administration of vaccine in each group. The DNA-rTV-gp140 immune regimen induced higher titers and affinity levels of HIV-1 gp120/gp140 antibodies and stronger V1V2-gp70 antibodies than the rTV-gp140 regimen. In the guinea pigs that underwent the DNA-rTV-gp140 regimen, the highest V1V2-gp70 antibody was induced in the 12-week-interval group. However, the avidity of antibodies was improved in the 4-week-interval group. Using the rTV-gp140 immunization strategy, guinea pigs boosted at 8 or 12 weeks after rTV priming elicited stronger humoral responses than those boosted at 4 weeks after priming. In conclusion, this study shows that the immunization strategy of HIV-1 DNA vaccine priming, followed by rTV and protein vaccine boosting, could strengthen the humoral response against HIV-1. Longer intervals were better to induce V1V2-gp70-specific antibodies, while shorter intervals were more beneficial to enhance the avidity of antibodies.
AIDS Vaccines
;
administration & dosage
;
genetics
;
immunology
;
Animals
;
DNA, Viral
;
administration & dosage
;
genetics
;
immunology
;
Female
;
Guinea Pigs
;
HIV Infections
;
immunology
;
prevention & control
;
virology
;
HIV-1
;
genetics
;
immunology
;
Humans
;
Immunization
;
methods
;
Vaccines, DNA
;
administration & dosage
;
genetics
;
immunology
;
Vaccinia virus
;
genetics
;
immunology
;
env Gene Products, Human Immunodeficiency Virus
;
administration & dosage
;
genetics
;
immunology
7.Research progress in the structure and fuction of Orthopoxvirus host range genes.
Zheng LIU ; Ying LIU ; Yi-Ming SHAO
Chinese Journal of Virology 2013;29(4):437-441
Orthopoxvirus vector has a broad prospect in recombinant vaccine research, but the rarely severe side-effect impedes its development. Vaccinia virus and Cowpox virus of Orthopoxvirus have broad host range, and they have typical host range genes as K1L, CP77 and C7L. These three genes affect host range of Vaccinia virus, disturb the cell signaling pathways, suppress immune response and are related to virulence.
Cell Line
;
Cowpox virus
;
genetics
;
immunology
;
pathogenicity
;
physiology
;
Genetic Vectors
;
Host Specificity
;
genetics
;
Orthopoxvirus
;
genetics
;
immunology
;
pathogenicity
;
physiology
;
Signal Transduction
;
Vaccines, Synthetic
;
immunology
;
Vaccinia virus
;
genetics
;
immunology
;
pathogenicity
;
physiology
;
Viral Proteins
;
genetics
;
metabolism
;
Viral Vaccines
;
immunology
;
Virulence
8.Requirement of CD4 Help for Induction of CD8 T Cell Response Specific for Virally Derived H60.
Su Jeong RYU ; Bora KANG ; Seok Ho KIM ; Tae Woo KIM ; Jun CHANG ; Eun Young CHOI
Immune Network 2012;12(3):118-125
CD40-CD40L-mediated help from CD4 T cells is essential to induce primary CD8 T cell responses specific to the non-inflammatory cell-based antigen H60. In this study, using H60 as a model antigen, we generated recombinant vaccinia viruses (rVVs) expressing the H60 CD8 epitope and investigated whether CD4 help was required to activate the CD8 T cell response specific to the virally expressed H60. The immune response after infection with rVVs expressing H60 was similar to that after immunization with H60 congenic splenocytes, with a peak frequency of H60-specific CD8 T cells detected in the blood on day 10 post-infection. A CD8 T cell response specific for virally derived H60 was not induced in CD4-depleted mice, but was in CD40-deficient mice. These results provide insights into the characterization of the CD8 T cell response specifically for antigens originating from cellular sources compared to viral sources.
Animals
;
Immunization
;
Mice
;
T-Lymphocytes
;
Vaccinia virus
9.Evaluation of modified vaccinia virus Ankara expressing VP2 protein of infectious bursal disease virus as an immunogen in chickens.
Flavia Adriana ZANETTI ; Maria Paula Del Medico ZAJAC ; Oscar Alberto TABOGA ; Gabriela CALAMANTE
Journal of Veterinary Science 2012;13(2):199-201
A recombinant modified vaccinia Ankara (MVA) virus expressing mature viral protein 2 (VP2) of the infectious bursal disease virus (IBDV) was constructed to develop MVA-based vaccines for poultry. We demonstrated that this recombinant virus was able to induce a specific immune response by observing the production of anti-IBDV-seroneutralizing antibodies in specific pathogen-free chickens. Besides, as the epitopes of VP2 responsible to induce IBDV-neutralizing antibodies are discontinuous, our results suggest that VP2 protein expressed from MVA-VP2 maintained the correct conformational structure. To our knowledge, this is the first report on the usefulness of MVA-based vectors for developing recombinant vaccines for poultry.
Animals
;
Antibodies, Viral
;
Birnaviridae Infections/prevention & control/*veterinary
;
Cells, Cultured
;
Chick Embryo
;
Chickens
;
Fibroblasts/metabolism
;
Infectious bursal disease virus/*immunology
;
Poultry Diseases/*prevention & control/virology
;
Specific Pathogen-Free Organisms
;
Vaccinia virus/*genetics/immunology/metabolism
;
Viral Structural Proteins/genetics/*immunology/metabolism
;
Viral Vaccines/*immunology
10.Effect of aldosterone on the amplification of oncolytic vaccinia virus in human cancer lines.
Hyun Ju LEE ; Jasung RHO ; Shao Ran GUI ; Mi Kyung KIM ; Yu Kyoung LEE ; Yeon Sook LEE ; Jeong Eun KIM ; Euna CHO ; Mong CHO ; Tae Ho HWANG
The Korean Journal of Hepatology 2011;17(3):213-219
BACKGROUND/AIMS: JX-594 is an oncolytic virus derived from the Wyeth vaccinia strain that causes replication-dependent cytolysis and antitumor immunity. Starting with a cross-examination of clinical-trial samples from advanced hepatocellular carcinoma patients having high levels of aldosterone and virus amplification in JX-594 treatment, we investigated the association between virus amplification and aldosterone in human cancer cell lines. METHODS: Cell proliferation was determined by a cell-counting-kit-based colorimetric assay, and vaccinia virus quantitation was performed by quantitative polymerase chain reaction (qPCR) and a viral plaque assay. Also, the intracellular pH was measured using a pH-sensitive dye. RESULTS: Simultaneous treatment with JX-594 and aldosterone significantly increased viral replication in A2780, PC-3, and HepG2 cell lines, but not in U2OS cell lines. Furthermore, the aldosterone treatment time altered the JX-594 replication according to the cell line. The JX-594 replication peaked after 48 and 24 hours of treatment in PC-3 and HepG2 cells, respectively. qPCR showed that JX-594 entry across the plasma membrane was increased, however, the changes are not significant by the treatment. This was inhibited by treatment with spironolactone (an aldosterone-receptor inhibitor). JX-594 entry was significantly decreased by treatment with EIPA [5-(N-ethyl-N-isopropyl)amiloride; a Na+/H+-exchange inhibitor], but aldosterone significantly restored JX-594 entry even in the presence of EIPA. Intracellular alkalization was observed after aldosterone treatment but was acidified by EIPA treatment. CONCLUSIONS: Aldosterone stimulates JX-594 amplification via increased virus entry by affecting the H+ gradient.
Aldosterone/*pharmacology
;
Aldosterone Antagonists/pharmacology
;
Amiloride/analogs & derivatives/pharmacology
;
Animals
;
Carcinoma, Hepatocellular/blood/virology
;
Cell Line, Tumor
;
Humans
;
Hydrocortisone/blood
;
Hydrogen-Ion Concentration
;
Liver Neoplasms/blood/virology
;
Neuroprotective Agents/pharmacology
;
Oncolytic Virotherapy
;
Rabbits
;
Spironolactone/pharmacology
;
Vaccinia virus/*drug effects/genetics/metabolism/*physiology
;
Virus Replication/*drug effects

Result Analysis
Print
Save
E-mail