1.Detection of neutralizing antibodies and DNA of human papillomavirus 16, 18 in women aged 18-45 years in Funing, Jiangsu province.
Wenyu LIU ; Feixue WEI ; Jie TANG ; Shangbo YANG ; Yachun GAO ; Ting WANG ; Yunfei JIANG ; Mei LI ; Ying HONG ; Kai CHU ; Wen CHEN ; Yuemei HU ; Fengcai ZHU
Chinese Journal of Epidemiology 2016;37(3):406-409
OBJECTIVETo understand the distributions of DNA and neutralizing antibodies of human papillomavirus (HPV)16, 18 in 18-45 year-old women.
METHODSTotally, 1494 women were enrolled through multistage random sampling in Funing, Jiangsu province. Cervical exfoliated cells were collected from them for HPV DNA testing, and serum samples were taken from them for the detection of HPV16, 18 neutralizing antibodies by using pseudovirion-based neutralization assay(PBNA).
RESULTSAmong the 1494 women, 28(1.9%) and 188(12.6%) were positive for DNA and neutralizing antibody of HPV16 respectively, and 15(1.0%) and 60(4.0%) were positive for DNA and neutralizing antibody of HPV18, respectively. There were no significant differences in the detection rates of DNA and neutralizing antibody of HPV16, 18 among different age groups. About 16.7% of the women were infected with HPV16, 18, or both.
CONCLUSIONIn Funing county of Jiangsu province, most women aged 18-45 years has no immunity to HPV16 and 18, indicating that they are appropriate targets for HPV 16/18 vaccination.
Adolescent ; Adult ; Antibodies, Neutralizing ; isolation & purification ; Antibodies, Viral ; isolation & purification ; China ; DNA, Viral ; isolation & purification ; Female ; Human papillomavirus 16 ; immunology ; Human papillomavirus 18 ; immunology ; Humans ; Middle Aged ; Papillomavirus Infections ; prevention & control ; Papillomavirus Vaccines ; Young Adult
2.Immunotherapy for human papillomavirus-associated disease and cervical cancer: review of clinical and translational research.
Sung Jong LEE ; Andrew YANG ; T C WU ; Chien Fu HUNG
Journal of Gynecologic Oncology 2016;27(5):e51-
Cervical cancer is the fourth most lethal women's cancer worldwide. Current treatments against cervical cancer include surgery, radiotherapy, chemotherapy, and anti-angiogenic agents. However, despite the various treatments utilized for the treatment of cervical cancer, its disease burden remains a global issue. Persistent infection of human papillomavirus (HPV) has been identified as an essential step of pathogenesis of cervical cancer and many other cancers, and nation-wide HPV screening as well as preventative HPV vaccination program have been introduced globally. However, even though the commercially available prophylactic HPV vaccines, Gardasil (Merck) and Cervarix (GlaxoSmithKline), are effective in blocking the entry of HPV into the epithelium of cervix through generation of HPV-specific neutralizing antibodies, they cannot eliminate the pre-existing HPV infection. For these reason, other immunotherapeutic options against HPV-associated diseases, including therapeutic vaccines, have been continuously explored. Therapeutic HPV vaccines enhance cell-mediated immunity targeting HPV E6 and E7 antigens by modulating primarily dendritic cells and cytotoxic T lymphocyte. Our review will cover various therapeutic vaccines in development for the treatment of HPV-associated lesions and cancers. Furthermore, we will discuss the potential of immune checkpoint inhibitors that have recently been adopted and tested for their treatment efficacy against HPV-induced cervical cancer.
Dendritic Cells/immunology
;
Female
;
Genetic Vectors
;
Humans
;
*Immunotherapy
;
Papillomavirus Infections/*complications/therapy
;
Papillomavirus Vaccines/therapeutic use
;
*Translational Medical Research
;
Uterine Cervical Neoplasms/*therapy
;
Vaccines, DNA/therapeutic use
;
Vaccines, Subunit/therapeutic use
3.Improved immunogenicity of Newcastle disease virus inactivated vaccine following DNA vaccination using Newcastle disease virus hemagglutinin-neuraminidase and fusion protein genes.
Masoumeh FIROUZAMANDI ; Hassan MOEINI ; Davood HOSSEINI ; Mohd Hair BEJO ; Abdul Rahman OMAR ; Parvaneh MEHRBOD ; Aini IDERIS
Journal of Veterinary Science 2016;17(1):21-26
The present study describes the development of DNA vaccines using the hemagglutinin-neuraminidase (HN) and fusion (F) genes from AF2240 Newcastle disease virus strain, namely pIRES/HN, pIRES/F and pIRES-F/HN. Transient expression analysis of the constructs in Vero cells revealed the successful expression of gene inserts in vitro. Moreover, in vivo experiments showed that single vaccination with the constructed plasmid DNA (pDNA) followed by a boost with inactivated vaccine induced a significant difference in enzyme-linked immunosorbent assay antibody levels (p < 0.05) elicited by either pIRES/F, pIRES/F+ pIRES/HN or pIRES-F/HN at one week after the booster in specific pathogen free chickens when compared with the inactivated vaccine alone. Taken together, these results indicated that recombinant pDNA could be used to increase the efficacy of the inactivated vaccine immunization procedure.
Animals
;
Antibodies, Viral/blood
;
Cercopithecus aethiops
;
Chickens
;
*HN Protein/genetics/immunology
;
Immunogenicity, Vaccine/*immunology
;
Newcastle Disease/immunology
;
Newcastle disease virus/enzymology/*genetics/immunology
;
Specific Pathogen-Free Organisms
;
Vaccines, DNA/genetics/*immunology
;
Vaccines, Inactivated/immunology
;
Vero Cells
;
*Viral Fusion Proteins/genetics/immunology
;
Viral Vaccines/genetics/*immunology/*standards
4.Study on Cellular Immune Responses of DNA Vaccine, rAd5 and rMVA Expressing SIV Gag/Env Gene Combined Immunization in Mice.
Xiaozhou HE ; Danying CHEN ; Wandi WANG ; Ke XU ; Yi ZENG ; Xia FENG
Chinese Journal of Virology 2016;32(2):170-178
Therapeutic HIV vaccine was considered as a hopeful curative method for AIDS patients. However, there is still no suitable HIV animal model for vaccine study since the difference in the immune system between human and animals. To evaluate the therapeutic effect of combined immunization strategy with multiple vector vaccines in macaque models. Plasmid DNA, recombinant Ad5 and MVA vaccines which expressing SIV gag and env genes were constructed. Sequential and repeated immune strategy were applied to immunize mice with these three vaccines. Cellular immune responses in mice immunized with these three vaccines were measured by ELISPOT test in vitro and CTL assay in vivo. The results were analyzed and compared with different antigen combination, order of vaccines and intervals to choose a suitable immunization strategy for macaque immunization in future. It indicated that strong SIV-Gag/Env-specific cellular immune responses were induced by these three vector vaccines. It laid a foundation for evaluating the therapeutic effect of combined immunization strategy with multiple vector vaccines in SIV infected macaque models.
AIDS Vaccines
;
administration & dosage
;
genetics
;
immunology
;
Adenoviridae
;
genetics
;
metabolism
;
Animals
;
Antibodies, Viral
;
immunology
;
Female
;
Gene Products, env
;
administration & dosage
;
genetics
;
immunology
;
Gene Products, gag
;
administration & dosage
;
genetics
;
immunology
;
Genetic Vectors
;
genetics
;
metabolism
;
HIV Infections
;
immunology
;
prevention & control
;
virology
;
Humans
;
Immunization
;
Mice
;
Mice, Inbred BALB C
;
Simian Immunodeficiency Virus
;
genetics
;
immunology
;
Vaccines, DNA
;
administration & dosage
;
genetics
;
immunology
5.Construction and identification of HSV-1 vector vaccine carrying HIV-1 antigen.
Xiaofei ZHAO ; Jingxia GUO ; Xiaojuan LIU ; Zhenghai MA
Chinese Journal of Biotechnology 2015;31(3):384-393
To construct an HSV-1 vector vaccine carrying HIV-1 antigens, HIV-1 gp160, gag, protease and the expression elements were chained together, and then inserted into the internal inverted repeat sequence region of HSV-1 by bacterial artificial chromosome technology. Firstly, HIV-1 gp160 (including type B and C), gag and protease genes were cloned into pcDNA3 in series to generate the pcDNA/gBgp and pcDNA/gCgp, then the recombinant plasmids were transfected into 293FT cells, and HIV-1 antigen was detected from transfected cells by Western blotting. Then the expression cassettes from pcDNA/gBgp and pcDNA/gCgp, comprising HIV-1 antigen genes and expression elements, were cloned into pKO5/BN to generate the shuttle plasmids pKO5/BN/gBgp and pKO5/BN/gCgp. The shuttle plasmids were electroporated into E. coli cells that harbor an HSV-BAC, the recombinant bacteria were screened, and the recombinant DNA was extracted and transfected into Vero cells. The recombinant virus was purified through picking plaques, the virus' DNAs were identified by Southern blotting; HIV-1 antigen was detected from the recombinant HSV-1 infected cells by Western blotting, and the virus' replication competent was analyzed. As the results, gp160 and gag proteins were detected from 293FT cells transfected with pcDNA/gBgp and pcDNA/gCgp by Western blotting. The recombinant bacteria were generated from the E. coli electroporated with pKO5/BN/gBgp or pKO5/BN/gCgp. The recombinant HSV was purified from the Vero cells transfected with the recombinant DNA, the unique DNA fragment was detected from the genome of recombination HSV by Southern blotting; gp120 and gp41 were detected from the infected cells by Western blotting, and the recombinant HSV retained replication competent in mammalian cells. The results indicate that the recombinant HSV carrying HIV-1 gp160, gag and protease genes was generated, the virus retains replication competent in mammalian cells, and could be used as a replicated viral vector vaccine.
Animals
;
Cercopithecus aethiops
;
Chromosomes, Artificial, Bacterial
;
DNA, Recombinant
;
genetics
;
DNA, Viral
;
genetics
;
Escherichia coli
;
HIV Antigens
;
genetics
;
immunology
;
HIV Envelope Protein gp160
;
genetics
;
immunology
;
HIV Protease
;
genetics
;
immunology
;
Herpes Simplex Virus Vaccines
;
immunology
;
Herpesvirus 1, Human
;
physiology
;
Plasmids
;
Transfection
;
Vero Cells
;
Virus Replication
;
gag Gene Products, Human Immunodeficiency Virus
;
genetics
;
immunology
6.MUC1-2VNTR DNA Vaccine Induces Immune Responses in Mouse Model with Multiple Myeloma.
Yue-Bo LIU ; Ze-Ping ZHOU ; Hao WANG ; Hong YANG ; Hong MU ; Gui-Yun HUANG ; You ZHANG
Journal of Experimental Hematology 2015;23(5):1366-1369
OBJECTIVETo investigate the humoral and cellular immune responses induced by MUC1-2VNTR DNA vaccine in multiple myeloma (MM) tumor-bearing mice.
METHODSIn vitro, multiple myeloma cells were transfected by plasmid pcDNA3.1-2VNTR/myc-hisB with Lipofectamine2000. The above-mentioned mouse myeloma cells were inoculated subcutaneously into female BALB/c mice for establishing tumor-bearing animal models. These female BALB/c mice were immunized with pcDNA-2VNTR/myc-hisB or pcDNA/myc-hisB. The cytotoxic T lymphocyte (CTL) activity was detected by the LDH method and the spleen lymphocyte proliferation activity was detected by CCK-8 method.
RESULTSAfter immunization of BALB/c tumor-bearing mice with recombinant plasmid for 25 days, the tumor mass (0.5605 ± 0.2065 g) was significantly lighter than that in the empty plasmid control group (1.521 ± 0.6985 g) (P < 0.01) and the control group (1.5315 ± 0.5425 g) (P < 0.01). The difference of tumor mass was not statislically significant between empty plasmid control group (1.521 ± 0.6985 g) and the control group (1.5315 ± 0.5425 g) (P > 0.05). The CTL and NK cell activity was significantly higher in the group of intramuscular injection with recombinant plasmid than that in control group. The spleen lymphocyte proliferation was statistically significantly increased after being immunized with recombinant plasmid pcDNA3.1-2VNTR/myc-hisB, compared with empty vector (P < 0.01). The results showed that MUC1-2VNTR gene immunization could induce anti-tumor effect in MM tumor-bearing mice.
CONCLUSIONMUC1-2VNTR DNA immunization can elicit both humoral and cellular tumor specific immune response to multiple myeloma in MM tumor-bearing mice. It suggested that the MUC1-2VNTR DNA vaccine may be a potential treatment measure for patients with MM.
Animals ; Cancer Vaccines ; therapeutic use ; Female ; Genetic Vectors ; Humans ; Immunization ; Killer Cells, Natural ; immunology ; Lymphocyte Activation ; Mice ; Mice, Inbred BALB C ; Minisatellite Repeats ; Mucin-2 ; genetics ; Multiple Myeloma ; immunology ; therapy ; Neoplasm Transplantation ; Plasmids ; Spleen ; cytology ; T-Lymphocytes, Cytotoxic ; immunology ; Transfection ; Vaccines, DNA ; therapeutic use
7.IL15 DNA adjuvant enhances cellular and humoral immune responses induced by DNA and adenoviral vectors encoding HIV-1 subtype B gp160 gene.
Ke XU ; Shao-Hua XU ; Xia FENG ; Shuang-Qing YU ; Yi ZENG
Chinese Journal of Virology 2014;30(1):62-65
To enhance the immunogenicity of DNA and adenoviral vector vaccines expressing HIV-1 subtype B gp160, human interleukin 15 (hIL15) DNA adjuvant (pVR-hIL15) was constructed. BALB/c mice received DNA prime/protein boost immunization with pVR-HIVgp160/Ad5-HIVgp160 alone or combined with pVR-hIL15. Cellular and humoral immune responses were evaluated by IFN-gamma enzyme-linked immunosorbent spot assay and enzyme-linked immunosorbent assay, respectively. Compared with those immunized with vaccines alone, the mice immunized with vaccines combined with pVR-hIL15 had significantly increased specific cellular response and antibody titer (P < 0.05). It suggests that the IL15 DNA adjuvant can enhance the immune responses induced by prime-boost regimen using DNA and adenoviral vector encoding HIV-1 subtype B gp160.
Adenoviridae
;
genetics
;
Adjuvants, Immunologic
;
Animals
;
Antibodies, Viral
;
immunology
;
Antibody Specificity
;
Female
;
Genetic Vectors
;
genetics
;
HIV Envelope Protein gp120
;
immunology
;
HIV Envelope Protein gp160
;
genetics
;
immunology
;
HIV Envelope Protein gp41
;
immunology
;
Humans
;
Immunity, Cellular
;
Immunity, Humoral
;
Interleukin-15
;
genetics
;
Mice
;
Mice, Inbred BALB C
;
Vaccines, DNA
;
genetics
;
immunology
8.Foxp3(+)Treg cells mediate immune protection of Humulus pollen allergy DNA vaccine pcDNA3.1-Hum in asthmatic mice.
Jiamei LU ; Manxiang LI ; Xiuzhen SUN ; Yonghong ZHANG ; Yun LIU ; Jing XU ; Sumei ZHANG
Journal of Southern Medical University 2014;34(1):14-19
OBJECTIVETo construct a humulus pollen allergy DNA vaccine pcDNA3.1-Hum and investigate its effect for immune protection mediated by Foxp3(+)Treg cells in asthmatic mice.
METHODSThe target humulus gene obtained from pTripIEx2-Hum plasmid by double enzyme digestion was inserted sequentially into pcDNA3.1(-) vector to generate the recombinant plasmid pcDNA3.1-Hum, which was validated by sequencing. The pcDNA3.1-Hum plasmid was transfected into COS-7 cells and the expression of the ectopic protein was analyzed using Western blotting. Co-cultured dendritic cells and CD4(+)CD25(-) T cells were stimulated with the expressed protein to test its efficacy in inducing Foxp3(+)Treg cells. The levels of humulus-specific IgE and IgG2a were assayed to evaluate the allergenicity and immunogenicity of pcDNA3.1-Hum in mice. The immunoprotective effect of pcDNA3.1-Hum was assessed in a mouse model of humulus-specific asthma.
RESULTSThe constructed pcDNA3.1-Hum plasmid was validated by sequencing and Western blotting, and the expressed protein was shown to induce Foxp3(+)Treg cells in the co-culture. In normal mice, pcDNA3.1-Hum induced a significant increase of humulus-specific IgG2a but had no effect on IgE. In the asthmatic mice, pcDNA3.1-Hum significantly decreased inflammatory cell counts and eosinophil percentages in the BALF, ameliorated lung inflammation, and lowered AHR and IL-4 levels; immunization of the mice with pcDNA3.1-Hum reversed humulus-induced reduction of serum IFN-γ and prevented the humulus-triggered reduction of Foxp3(+)Treg cell percentage in the spleen.
CONCLUSIONWe have successfully constructed a highly immunogenic pcDNA3.1-Hum DNA vaccine that can mediate immune protection by inducing Foxp3(+)Treg cells.
Allergens ; immunology ; Animals ; Asthma ; immunology ; Cell Differentiation ; Disease Models, Animal ; Female ; Humulus ; immunology ; Mice ; Mice, Inbred BALB C ; Plasmids ; T-Lymphocytes, Regulatory ; cytology ; immunology ; Vaccines, DNA ; immunology
9.Cloning, expression and protective efficacy evaluation of radiation sensitive protein 23 (RAD23) from Schistosoma japonicum.
Changjian LI ; Min ZHANG ; Yang HONG ; Yanhui HAN ; Xiaodan CAO ; Hongxiao HAN ; Zhiqiang FU ; Chuangang ZHU ; Ke LU ; Hao LI ; Jiaojiao LIN
Chinese Journal of Biotechnology 2014;30(11):1669-1678
Radiation sensitive protein 23 (RAD23) is a nucleotide excision repair (NER) protein that plays an important role in Ubiquitin-proteasome pathway (UPP). Schistosoma japonicum radiation sensitive protein23 (SjRAD23) cDNA sequences were amplified by PCR and cloned into pET28a (+) vector to construct recombinant expression plasmid pET28a(+)-SjRAD23. The recombinant protein was expressed as both inclusion bodies and the supernatant in Escherichia coli BL21 (DE3) cell. Immunofluorescence observation shows that SjRAD23 was mainly distributed on the tegument surface of the worms. ELISA assay reveals that specific IgG, IgG1 and IgG2a antibodies could be detected in the sera of rSjRAD23 immunized mice. Western blotting analysis shows that the recombinant SjRAD23 could be recognized by serum specific to soluble adult worm antigen of S. japonicum. BALB/c mice vaccinated with rSjRAD23 combined with 206 adjuvant revealed 35.94% worm reduction and 40.59% liver egg reduction when compared with that of the adjuvant control
Animals
;
Antibodies, Helminth
;
blood
;
Blotting, Western
;
Cloning, Molecular
;
DNA Repair Enzymes
;
genetics
;
metabolism
;
DNA, Complementary
;
Enzyme-Linked Immunosorbent Assay
;
Escherichia coli
;
Genetic Vectors
;
Helminth Proteins
;
genetics
;
immunology
;
Immunoglobulin G
;
blood
;
Mice
;
Mice, Inbred BALB C
;
Recombinant Proteins
;
genetics
;
immunology
;
Schistosoma japonicum
;
genetics
;
metabolism
;
Schistosomiasis japonica
;
prevention & control
;
Vaccines
;
immunology
10.Distribution of Serotypes and Antibiotic Susceptibility Patterns Among Invasive Pneumococcal Diseases in Saudi Arabia.
Yazeed A AL-SHERIKH ; Lakshmana K GOWDA ; M Marie MOHAMMED ALI ; James JOHN ; Dabwan KHALED HOMOUD MOHAMMED ; Pradeep CHIKKABIDARE SHASHIDHAR
Annals of Laboratory Medicine 2014;34(3):210-215
BACKGROUND: Streptococcus pneumoniae causes life-threatening infections such as meningitis, pneumonia, and febrile bacteremia, particularly in young children. The increasing number of drug-resistant isolates has highlighted the necessity for intervening and controlling disease. To achieve this, information is needed on serotype distribution and patterns of antibiotic resistance in children. METHODS: All cases of invasive pneumococcal disease (IPD) in children aged less than 15 yr recorded at King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia, were reviewed for serotyping and antibiotic susceptibility. Isolates were collected from 78 consecutive patients with IPD between 2009 and 2012. All collected isolates were subjected to serotyping by co-agglutination, sequential multiplex PCR, and single PCR sequetyping as previously described. RESULTS: The most frequently isolated IPD serotypes were 23F, 6B, 19F, 18C, 4, 14, and 19A, which are listed in decreasing order and cover 77% of total isolates. The serotype coverage for the pneumococcal conjugate vaccine (PCV)7, PCV10, and PCV13 was 77%, 81%, and 90%, respectively. Results from sequential multiplex PCR agreed with co-agglutination results. All serotypes could not be correctly identified using single PCR sequetyping. Minimum inhibitory concentration showed that 50 (64%) isolates were susceptible to penicillin, whereas 70 (90%) isolates were susceptible to cefotaxime. CONCLUSIONS: The most common pneumococcal serotypes occur with frequencies similar to those found in countries where the PCV has been introduced. The most common serotypes in this study are included in the PCVs. Addition of 23A and 15 to the vaccine would improve the PCV performance in IPD prevention.
Adolescent
;
Anti-Bacterial Agents/*pharmacology
;
Bacterial Proteins/genetics
;
Cefotaxime/pharmacology
;
Child
;
Child, Preschool
;
DNA, Bacterial/analysis
;
Humans
;
Infant
;
Meningitis/*diagnosis/microbiology
;
Microbial Sensitivity Tests
;
Multiplex Polymerase Chain Reaction
;
Penicillins/pharmacology
;
Pneumococcal Vaccines/immunology
;
Pneumonia/*diagnosis/microbiology
;
Protein Tyrosine Phosphatases/genetics
;
Retrospective Studies
;
Saudi Arabia
;
Serotyping
;
Streptococcus pneumoniae/*drug effects/genetics

Result Analysis
Print
Save
E-mail