1.Bear bile powder alleviates Parkinson's disease-like behavior in mice by inhibiting astrocyte-mediated neuroinflammation.
Lupeng WANG ; Yuyan BAI ; Yanlin TAO ; Wei SHEN ; Houyuan ZHOU ; Yixin HE ; Hui WU ; Fei HUANG ; Hailian SHI ; Xiaojun WU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(9):710-720
Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people. In particular, increasing evidence has showed that astrocyte-mediated neuroinflammation is involved in the pathogenesis of PD. As a precious traditional Chinese medicine, bear bile powder (BBP) has a long history of use in clinical practice. It has numerous activities, such as clearing heat, calming the liver wind and anti-inflammation, and also exhibits good therapeutic effect on convulsive epilepsy. However, whether BBP can prevent the development of PD has not been elucidated. Hence, this study was designed to explore the effect and mechanism of BBP on suppressing astrocyte-mediated neuroinflammation in a mouse model of PD. PD-like behavior was induced in the mice by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (30 mg·kg-1) for five days, followed by BBP (50, 100, and 200 mg·kg-1) treatment daily for ten days. LPS stimulated rat C6 astrocytic cells were used as a cell model of neuroinflammation. THe results indicated that BBP treatment significantly ameliorated dyskinesia, increased the levels of tyrosine hydroxylase (TH) and inhibited astrocyte hyperactivation in the substantia nigra (SN) of PD mice. Furthermore, BBP decreased the protein levels of glial fibrillary acidic protein (GFAP), cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS), and up-regulated the protein levels of takeda G protein-coupled receptor 5 (TGR5) in the SN. Moreover, BBP significantly activated TGR5 in a dose-dependent manner, and decreased the protein levels of GFAP, iNOS and COX2, as well as the mRNA levels of GFAP, iNOS, COX2, interleukin (IL) -1β, IL-6 and tumor necrosis factor-α (TNF-α) in LPS-stimulated C6 cells. Notably, BBP suppressed the phosphorylation of protein kinase B (AKT), inhibitor of NF-κB (IκBα) and nuclear factor-κB (NF-κB) proteins in vivo and in vitro. We also observed that TGR5 inhibitor triamterene attenuated the anti-neuroinflammatory effect of BBP on LPS-stimulated C6 cells. Taken together, BBP alleviates the progression of PD mice by suppressing astrocyte-mediated inflammation via TGR5.
Humans
;
Mice
;
Rats
;
Animals
;
Aged
;
Middle Aged
;
Parkinson Disease/pathology*
;
Astrocytes/pathology*
;
Powders/therapeutic use*
;
Ursidae/metabolism*
;
NF-kappa B/metabolism*
;
Neuroinflammatory Diseases
;
Neurodegenerative Diseases/metabolism*
;
Cyclooxygenase 2/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Bile
;
Mice, Inbred C57BL
;
Microglia
;
Disease Models, Animal
2.Bear bile powder attenuates senecionine-induced hepatic sinusoidal obstruction syndrome in mice.
Kai-Yuan JIANG ; Yi ZHANG ; Xuan-Ling YE ; Fen XIONG ; Yan CHEN ; Xia-Li JIA ; Yi-Xin ZHANG ; Li YANG ; Ai-Zhen XIONG ; Zheng-Tao WANG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(4):270-281
Hepatic sinusoidal obstruction syndrome (HSOS) via exposure to pyrrolizidine alkaloids (PAs) is with high mortality and there is no effective treatment in clinics. Bear bile powder (BBP) is a famous traditional animal drug for curing a variety of hepatobiliary diseases such as cholestasis, inflammation, and fibrosis. Here, we aim to evaluate the protective effect of BBP against HSOS induced by senecionine, a highly hepatotoxic PA compound. Our results showed that BBP treatment protected mice from senecionine-induced HSOS dose-dependently, which was evident by improved liver histology including reduced infiltration of inflammatory cells and collagen positive cells, alleviated intrahepatic hemorrhage and hepatic sinusoidal endothelial cells, as well as decreased conventional serum liver function indicators. In addition, BBP treatment lowered matrix metalloproteinase 9 and pyrrole-protein adducts, two well-known markers positively associated with the severity of PA-induced HSOS. Further investigation showed that BBP treatment prevents the development of liver fibrosis by decreasing transforming growth factor beta and downstream fibrotic molecules. BBP treatment also alleviated senecionine-induced liver inflammation and lowered the pro-inflammatory cytokines, in which tauroursodeoxycholic acid played an important role. What's more, BBP treatment also decreased the accumulation of hydrophobic bile acids, such as cholic acid, taurocholic acid, glycocholic acid, as well. We concluded that BBP attenuates senecionine-induced HSOS in mice by repairing the bile acids homeostasis, preventing liver fibrosis, and alleviating liver inflammation. Our present study helps to pave the way to therapeutic approaches of the treatment of PA-induced liver injury in clinics.
Animals
;
Bile
;
Bile Acids and Salts
;
Endothelial Cells/metabolism*
;
Hepatic Veno-Occlusive Disease/pathology*
;
Inflammation/pathology*
;
Liver Cirrhosis/drug therapy*
;
Mice
;
Powders
;
Pyrrolizidine Alkaloids/adverse effects*
;
Ursidae
3.Efficacy evolution of bear bile and related research on components.
Xin-Yue LI ; Fang-Fang SU ; Chao JIANG ; Wei ZHANG ; Feng WANG ; Qing ZHU ; Guang YANG
China Journal of Chinese Materia Medica 2022;47(18):4846-4853
Animal medicine is an important part of traditional Chinese medicine(TCM). Bear bile is one of the rare animal-derived medicinal materials with the functions of clearing the liver, promoting bile secretion, calming the liver, relieving convulsions, clearing heat, and removing toxins. From the Jin Dynasty to the Tang Dynasty, bear bile was mainly used to treat internal diseases, surgical diseases, and pediatric diseases with limitations. At present, bear bile has been used to treat various diseases in pediatrics, gynecology, internal medicine, and surgery. Studies on the chemical constituents and pharmacological effects of bear bile mostly focused on bile acids. Although the non-bile acids also showed certain pharmacological effects, their mechanism of action was less investigated. At present, the source animals of bear bile are national second-class protected animals. Obtaining transformed bear bile powder through biotransformation is expected to alleviate the shortage of bear bile resources to a certain extent. Although related research on bear bile substitutes has protected bear bile resources, there are problems in functional quantification and modern interpretation. It is necessary to sort out the functions and indications of bear bile recorded in ancient books according to related modern research. This study firstly reviewed the evolution of bear bile functions and indications, analyzed the chemical components of bear bile, sorted out the relevant records of the efficacy and clinical application of bear bile in ancient books, and summarized the research progress in the safety of bear bile based on the modern pharmacological effects and clinical applications of bear bile, which is conducive to the clarification of modern efficacy and functional quantification of bear bile and the tentative exploration of the modern interpretation of bear bile.
Animals
;
Bile/metabolism*
;
Bile Acids and Salts
;
Humans
;
Medicine, Chinese Traditional
;
Powders
;
Ursidae/metabolism*
4.Therapeutic Effects of Different Animal Bile Powders on Lipid Metabolism Disorders and Their Composition Analysis.
Da-Xin CHEN ; Jian-Feng CHU ; Shan LIN ; Ling ZHANG ; Hong-Wei CHEN ; Zhi-Wei SUN ; Jian-Feng XU ; Qiao-Yan CAI ; Li-Li WANG ; Jun PENG
Chinese journal of integrative medicine 2022;28(10):918-923
OBJECTIVE:
To compare the therapeutic effect of different animal bile powders on lipid metabolism disorders induced by high-fat diet in rats, and analyze the bioactive components of each animal bile powder.
METHODS:
Sixty Sprague-Dawley rats were randomly divided into 6 groups (n=10): normal diet control group, high-fat diet model group, high-fat diet groups orally treated with bear, pig, cow and chicken bile powders, respectively. Serum biochemical markers from the abdominal aorta in each group were analyzed. Changes in the body weight and liver weight were recorded. Pathohistological changes in the livers were examined. High performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was used to determine the composition of bioactive components in each animal bile powder.
RESULTS:
Treatment with different types of animal bile powders had different inhibitory effects on high-fat diet-induced increase of body weight and/or liver weight in rats, most notably in bear and pig bile powders (P<0.05). High-fat diet induced lipid metabolism disorder in rats, which could be reversed by treatment with all kinds of bile powders. Bear bile and chicken bile showed the most potent therapeutic effect against lipid metabolism disorder. Cow and bear bile effectively alleviated high-fat diet induced liver enlargement and discoloration, hepatocyte swelling, infiltration of inflammatory cells and formation of lipid vacuoles. Bioactive component analysis revealed that there were significant differences in the relative content of taurocholic acid, taurodeoxycholic acid and ursodeoxycholic acid among different types of animal bile. Interestingly, a unique component with molecular weight of 496.2738 Da, whose function has not yet been reported, was identified only in bear bile powder.
CONCLUSIONS
Different animal bile powders had varying therapeutic effect against lipid metabolism disorders induced by high-fat diet, and bear bile powder demonstrated the most effective benefits. Bioactive compositions were different in different types of animal bile with a novel compound identified only in bear bile powder.
Animals
;
Bile/metabolism*
;
Biomarkers/metabolism*
;
Body Weight
;
Cattle
;
Diet, High-Fat
;
Female
;
Lipid Metabolism
;
Lipid Metabolism Disorders/metabolism*
;
Lipids/analysis*
;
Liver/metabolism*
;
Powders
;
Rats
;
Rats, Sprague-Dawley
;
Swine
;
Taurodeoxycholic Acid/metabolism*
;
Ursidae/metabolism*
;
Ursodeoxycholic Acid/metabolism*
5.Bear Bile Powder Inhibits Growth of Hepatocellular Carcinoma via Suppressing STAT3 Signaling Pathway in Mice.
Hong-Wei CHEN ; A-Ling SHEN ; Li-Ya LIU ; Jun PENG ; Jian-Feng CHU
Chinese journal of integrative medicine 2020;26(5):370-374
OBJECTIVE:
To evaluate the inhibitory effect of bear bile powder (BBP) on hepatocellular carcinoma (HCC) growth in vivo and investigate the underlying mechanisms.
METHODS:
A HCC xenograft mouse model was developed by producing with huh7 cells. After 5 days following xenograft implantation, ten HCC xenograft mice were given intra-gastric administration with 10 mg/(kg•d) dose of BBP or saline for 3 weeks. Tumor growth in HCC xenograft mice was evaluated by measuring the tumor weight and volume. Cell apoptosis, proliferation or tumor angiogenesis were examined via immunohistochemical (IHC) staining for transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL), proliferating cell nuclear antigen (PCNA) or cluster of differentiation 31 (CD31), respectively. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) were determined by Western blot. The mRNA and protein expressions of Bcl-2, Bax, Cyclin D1 and Cyclin-dependent kinase 4 (CDK4) in HCC tumor tissues were respectively determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. The protein expression of vascular endothelial growth factor A (VEGF-A) in tumor tissues was examined by IHC staining.
RESULTS:
BBP treatment led to a significant decrease on tumor volume and tumor weight in HCC mice (P<0.05) and had no effect on the change of body weight. In addition, BBP profoundly promoted cell apoptosis, inhibited cell proliferation and intratumoral microvessel density in HCC tumor tissues (P<0.05). Moreover, BBP treatment remarkably suppressed the STAT3 phosphorylation and modulated the expression of critical target genes including Bcl-2, Bax, Cyclin D1, CDK4 and VEGF-A in HCC mice.
CONCLUSION
BBP exerts its anti-cancer activities via suppressing STAT3 signaling pathway and affecting multiple intracellular targets.
Animals
;
Bile
;
Biological Products
;
pharmacology
;
Carcinoma, Hepatocellular
;
drug therapy
;
Cell Line, Tumor
;
Disease Models, Animal
;
Liver Neoplasms
;
drug therapy
;
Medicine, Chinese Traditional
;
Mice
;
Mice, Inbred BALB C
;
Powders
;
STAT3 Transcription Factor
;
metabolism
;
Ursidae
6.Bear bile powder inhibits angiogenesis in vivo and in vitro.
Jin-yan ZHAO ; Wei LIN ; Qun-chuan ZHUANG ; Xiao-yong ZHONG ; Jun PENG ; Zhen-feng HONG
Chinese journal of integrative medicine 2015;21(5):369-375
OBJECTIVETo evaluate the effect of bear bile powder (BBP) on angiogenesis, and investigate the underlying molecular mechanisms.
METHODSA chick embryo chorioallantoic membrane (CAM) assay was used to evaluate the angiogensis in vivo. Human umbilical vein endothelial cells (HUVECs) were treated with 0, 0.25, 0.5, 0.75, and 1.0 mg/mL of BBP for 24, 48 and 72 h, respectively. The 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to determine the viability of HUVECs. Cell cycle progression of HUVECs was examined by fluorescence-activated cell sorting (FACS) analysis with propidium iodide staining. HUVEC migration was determined by wound healing method. An ECMatrix gel system was used to evaluate the tube formation of HUVECs. The mRNA and protein expression of vascular endothelial growth factor (VEGF)-A in both HUVECs and HepG2 human cells were examined by reverse transcription-polymerase chain reaction and enzyme linked immunosorbent assay, respectively.
RESULTSCompared with the untreated group, BBP inhibited angiogenesis in vivo in the CAM model (P< 0.01). In addition, treatment with 0.25-1 mg/mL of BBP for 24, 48, or 72 h respectively reduced cell viability by 14%-27%, 29%-69% and 33%-91%, compared with the untreated control cells (P< 0.01). Additionally, BBP inhibited the proliferation of HUVECs via blocking the cell cycle G to S progression, compared with the S phase of untreated cells 48.05%± 5.00%, 0.25-0.75 mg/mL BBP reduced S phase to 40.38%± 5.30%, 36.54± 4.50% and 32.13± 3.50%, respectively (Pglt; 0.05). Moreover, BBP inhibited the migration and tube formation of HUVECs, compared with the tube length of untreated cells 100%± 12%, 0.25-0.75 mg/mL BBP reduced the tube length to 62%± 9%, 43%± 5% and 17%± 3%, respectively (p< 0.01). Furthermore, BBP treatment down-regulated the mRNA and protein expression levels of VEGF-A in both HepG2 cells and HUVECs.
CONCLUSIONBBP could inhibit the angiogenesis by reducing VEGF-A expression, which may, in part, explain its anti-tumor activity.
Animals ; Bile ; chemistry ; Cell Cycle ; Cell Movement ; Cell Proliferation ; Chick Embryo ; Chorioallantoic Membrane ; blood supply ; Gene Expression Regulation ; Hep G2 Cells ; Human Umbilical Vein Endothelial Cells ; cytology ; Humans ; Neovascularization, Physiologic ; Powders ; RNA, Messenger ; genetics ; metabolism ; Ursidae ; Vascular Endothelial Growth Factor A ; genetics ; metabolism
7.Anti-atherosclerotic Effects of Bear Bile Powder in Shexiang Tongxin Dripping Pill: a Mechanism Study.
Min-qi XIONG ; Cheng-lin JIA ; Jing-gang CUI ; Bing-bing MING ; Yu-ling ZHU ; Wen-jian WANG ; Yu CHEN ; Teng ZHANG
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(9):1083-1089
UNLABELLEDOBJECTIVE : To study the anti-atherosclerotic mechanism of bear bile powder (BBP) in Shexiang Tongxin Dripping Pill (STDP) , and to provide scientific evidence for treating atherosclerosis (AS) by its therapeutic characteristics of cool resuscitation.
METHODSAS model was duplicated using ApoE-/- gene knocked mice fed with high-fat diet. Thirty ApoE-/- deficient male mice were divided into four groups according to body weight using random digit table, i.e., the model group (A, n =9), the STDP group (B, n=E7), the STDP without BBP group (C, n =7), and the BBP group (D, n =9). Besides, another 9 C57BL/6J male mice of the same age were recruited as a normal control group (E). All mice in Group B, C, and D were respectively administered with corresponding drugs (30, 30, and 0. 33 mg/kg) by gastrogavage. Equal volume of normal saline was administered to mice in Group A and E. All medication lasted for 8 successive weeks. Serum levels of inflammatory cytokines such as interleukin 2 (IL-2), interleukin 6 (IL-6), tumor necrosis factor a (TNF-α), interferon y (IFNγ), and oxidized low-density lipoprotein (ox-LDL) were measured by ELISA. Serum levels of malondialdehyde (MDA), activities of glutathione (GSH) and superoxide dismutase (SOD) were determined using biochemical assay. Contents of reactive oxygen species (ROS) in the aortic root was detected by dihydroethidum (DHE) fluorescent probe. Expression levels of microRNAs (such as miR-20, miR-21, miR-126, and miR-155) were detected by real-time PCR.
RESULTSThe fluorescence intensity of the aorta was obviously enhanced in Group A. But it was obviously attenuated in Group B, C, and D, and the attenuation was the most in Group B. Compared with Group E, serum levels of IL-2, IL-6, TNF-α, IFN-γ, oxLDL, and MDA all increased (P <0. 01), GSH contents and SOD activities decreased (P <0. 01), expression levels of miR-126, miR-21, and miR-155 in aorta increased (P <0. 01), and the expression level of miR-20 decreased in Group A (P<0. 01). Compared with Group A, serum levels of IL-2, IL-6, TNF-α, IFN-γ, oxLDL, and MDA were all down-regulated (P <0. 01), GSH contents and SOD activities were up-regulated (P <0. 01), expression levels of miR-126, miR-21, and miR-155 in aorta were down-regulated in Group B, C, and D (P <0. 01). The expression level of miR20 was up-regulated in Group B and D (P <0. 01). Compared with Group B, serum levels of IL-2, IL-6, TNF-α, IFN-γ increased (P <0.01); GSH contents and SOD activities decreased, levels of MDA and oxLDL increased (P <0. 01) in Group C and D. Expression levels of miR-20 and miR-155 were down-regulated in Group C and D (P <0. 01).
CONCLUSIONSSTDP played roles in significantly regulating inflammatory factors and oxidative stress factors. Its mechanism might be possibly associated with regulating expressions of miR-126, miR-21, miR-155, and miR-20 in aorta. BBP played significant roles in STDP.
Animals ; Aorta ; Apolipoproteins E ; metabolism ; Atherosclerosis ; Bile ; Cytokines ; Diet, High-Fat ; Drugs, Chinese Herbal ; administration & dosage ; pharmacology ; therapeutic use ; Interleukin-6 ; metabolism ; Lipoproteins, LDL ; metabolism ; Male ; Malondialdehyde ; metabolism ; Mice ; Mice, Inbred C57BL ; Oxidative Stress ; Plaque, Atherosclerotic ; drug therapy ; Reactive Oxygen Species ; Superoxide Dismutase ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism ; Ursidae
8.Expression of neuropeptide Y and long leptin receptor in gastrointestinal tract of giant panda.
Qihui LUO ; Xiuying TANG ; Zhengli CHEN ; Kaiyu WANG ; Chengdong WANG ; Desheng LI ; Caiwu LI
Chinese Journal of Biotechnology 2015;31(8):1175-1183
To study the expression and distribution of neuropeptide Y (NPY) and long leptin receptor (OB-Rb) in the gastrointestinal tract of giant panda, samples of three animals were collected from the key laboratory for reproduction and conservation genetics of endangered wildlife of Sichuan province, China conservation and research center for the giant panda. Paraffin sections of giant panda gastrointestinal tissue samples were observed using hematoxylin-eosin staining (HE) and strept actividin-biotin complex immunohistochemical staining (IHC). The results show that the intestinal histology of three pandas was normal and no pathological changes, and there were rich single-cell and multi-cell mucous glands, long intestinal villi and thick muscularis mucosa and muscle layer. Positive cells expressing NPY and OB-Rb were widely detected in the gastrointestinal tract by IHC methods. NPY positive nerve fibers and neuronal cell were widely distributed in submucosal plexus and myenteric plexus, especially in the former. They were arranged beaded or point-like shape. NPY positive cells were observed in the shape of ellipse and polygon and mainly located in the mucous layer and intestinal glands. OB-Rb positive cells were mainly distributed in the mucous layer and the laminae propria, especially the latter. These results confirmed that NPY and OB-Rb are widely distributed in the gut of the giant panda, which provide strong reference for the research between growth and development, digestion and absorption, and immune function.
Animals
;
China
;
Intestines
;
metabolism
;
Neuropeptide Y
;
genetics
;
metabolism
;
Receptors, Leptin
;
genetics
;
metabolism
;
Ursidae
;
genetics
;
metabolism
9.Advances in studies on bear bile powder.
Chao-fan ZHOU ; Guo-jian GAO ; Ying LIU
China Journal of Chinese Materia Medica 2015;40(7):1252-1258
In this paper, a detailed analysis was made on relevant literatures about bear bile powder in terms of chemical component, pharmacological effect and clinical efficacy, indicating bear bile powder's significant pharmacological effects and clinical application in treating various diseases. Due to the complex composition, bear bile powder is relatively toxic. Therefore, efforts shall be made to study bear bile powder's pharmacological effects, clinical application, chemical composition and toxic side-effects, with the aim to provide a scientific basis for widespread reasonable clinical application of bear bile powder.
Animals
;
Bile
;
chemistry
;
metabolism
;
Bile Acids and Salts
;
chemistry
;
pharmacology
;
Humans
;
Medicine, Chinese Traditional
;
Powders
;
chemistry
;
metabolism
;
pharmacology
;
Ursidae
;
metabolism
10.Effect of bear bile powder on STAT3 pathway in hepatocellular carcinoma xenograft.
Jin-Yan ZHAO ; Li-Ya LIU ; A-Ling SHEN ; Wei LIN ; Zhi-Yun CAO ; Qun-Chuan ZHUANG ; Zhen-Feng HONG
Chinese Journal of Integrated Traditional and Western Medicine 2014;34(8):976-981
OBJECTIVETo observe the effect of bear bile powder (BBP) on the STAT3 pathway and its downstream target genes of nude mice hepatocellular carcinoma (HCC) xenograft, and to explore its mechanism for treating HCC.
METHODSThe subcutaneous xenograft model was established using HepG2 cells. When the subcutaneous transplanted tumor was formed, naked mice were randomly divided into two groups, the BBP group and the control group. Mice in the BBP group were administered with BBP by gastrogavage, once daily for 3 consecutive weeks, while mice in the control group were administered with normal saline by gastrogavage, once daily for 3 consecutive weeks. The body weight and the tumor volume were measured once per week. By the end of medication, the tumor weight was weighed and the tumor inhibition ratio calculated. The apoptosis of the tumor tissue was detected by TdT-mediated dUTP nick end labeling (TUNEL). The expression of Bcl2-associated X protein (Bax), B cell lymphoma/eukemina-2 (Bcl-2), cyclin-dependent protein kinase (CDK4), cyclinD1 were detected by reverse transcription-polymerase chain reaction (RT-PCR). The protein expression levels of signal transducers and transcription activators 3 (p-STAT3), proliferating cell nuclear antigen (PCNA), Bax, Bcl-2, CDK4, and cyclinD1 were determined by immunohistochemistry.
RESULTSBBP could inhibit the tumor volume and tumor weight, showing statistical difference when compared with the control group (P < 0.01). Results of TUNEL showed that BBP could significantly induce the apoptosis of hepatoma carcinoma cells. Results of RT-PCR showed that BBP could up-regulate the expression of Bax and down-regulate mRNA expression of Bcl-2, CDK4, and cyclinD1. Immunohistochemical results showed that BBP could up-regulate the expression of Bax and inhibit the protein expression of p-STAT3, PCNA, Bcl-2, CDK4, and cyclinD1.
CONCLUSIONBBP could induce the apoptosis of hepatoma carcinoma cells and inhibit their proliferation by regulating STAT3 pathway.
Animals ; Bile ; Carcinoma, Hepatocellular ; metabolism ; pathology ; Cyclin D1 ; metabolism ; Cyclin-Dependent Kinase 4 ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; Hep G2 Cells ; Humans ; Liver Neoplasms ; metabolism ; pathology ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; STAT3 Transcription Factor ; metabolism ; Signal Transduction ; Ursidae ; Xenograft Model Antitumor Assays ; bcl-2-Associated X Protein ; metabolism

Result Analysis
Print
Save
E-mail