1.Effect of multi-glycosides of Tripterygium wilfordii on renal injury in diabetic kidney disease rats through NLRP3/caspase-1/GSDMD pyroptosis pathway.
Chun-Dong SONG ; Dan SONG ; Ping-Ping JIA ; Feng-Yang DUAN ; Ying DING ; Xian-Qing REN ; Wen-Sheng ZHAI ; Yao-Xian WANG ; Shu-Li HUANG
China Journal of Chinese Materia Medica 2023;48(10):2639-2645
This study investigated the effect of multi-glycosides of Tripterygium wilfordii(GTW) on renal injury in diabetic kidney disease(DKD) rats through Nod-like receptor protein 3(NLRP3)/cysteine-aspartic acid protease-1(caspase-1)/gsdermin D(GSDMD) pyroptosis pathway and the mechanism. To be specific, a total of 40 male SD rats were randomized into the normal group(n=8) and modeling group(n=34). In the modeling group, a high-sugar and high-fat diet and one-time intraperitoneal injection of streptozotocin(STZ) were used to induce DKD in rats. After successful modeling, they were randomly classified into model group, valsartan(Diovan) group, and GTW group. Normal group and model group were given normal saline, and the valsartan group and GTW group received(ig) valsartan and GTW, respectively, for 6 weeks. Blood urea nitrogen(BUN), serum creatinine(Scr), alanine ami-notransferase(ALT), albumin(ALB), and 24 hours urinary total protein(24 h-UTP) were determined by biochemical tests. The pathological changes of renal tissue were observed based on hematoxylin and eosin(HE) staining. Serum levels of interleukin-1β(IL-1β) and interleukin-18(IL-18) were detected by enzyme-linked immunosorbent assay(ELISA). Western blot was used to detect the expression of pyroptosis pathway-related proteins in renal tissue, and RT-PCR to determine the expression of pyroptosis pathway-related genes in renal tissue. Compared with the normal group, the model group showed high levels of BUN, Scr, ALT, and 24 h-UTP and serum levels of IL-1β and IL-18(P<0.01), low level of ALB(P<0.01), severe pathological damage to kidney, and high protein and mRNA levels of NLRP3, caspase-1, and GSDMD in renal tissue(P<0.01). Compared with the model group, valsartan group and GTW group had low levels of BUN, Scr, ALT, and 24 h-UTP and serum levels of IL-1β and IL-18(P<0.01), high level of ALB(P<0.01), alleviation of the pathological damage to the kidney, and low protein and mRNA levels of NLRP3, caspase-1, and GSDMD in renal tissue(P<0.01 or P<0.05). GTW may inhibit pyroptosis by decreasing the expression of NLRP3/caspase-1/GSDMD in renal tissue, thereby relieving the inflammatory response of DKD rats and the pathological injury of kidney.
Rats
;
Male
;
Animals
;
Diabetic Nephropathies/genetics*
;
Interleukin-18/metabolism*
;
Glycosides/pharmacology*
;
Tripterygium
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Rats, Sprague-Dawley
;
Caspase 1/metabolism*
;
Pyroptosis
;
Uridine Triphosphate/pharmacology*
;
Kidney
;
Valsartan/pharmacology*
;
RNA, Messenger/metabolism*
;
Diabetes Mellitus
2.Gene clone and functional identification of sterol glycosyltransferases from Paris polyphylla var. yunnanensis.
Min HE ; Si-Yuan GUO ; Yan YIN ; Chi ZHANG ; Xia-Nan ZHANG
China Journal of Chinese Materia Medica 2023;48(14):3774-3785
In this study, the authors cloned a glycosyltransferase gene PpUGT2 from Paris polyphylla var. yunnanensis with the ORF length of 1 773 bp and encoding 590 amino acids. The phylogenetic tree revealed that PpUGT2 belonged to the UGT80A subfamily and was named as UGT80A49 by the UDP-glycosyltransferase(UGT) Nomenclature Committee. The expression vector pET28a-PpUGT2 was constructed, and enzyme catalytic reaction in vitro was conducted via inducing protein expression and extraction. With UDP-glucose as sugar donor and diosgenin and pennogenin as substrates, the protein was found with the ability to catalyze the C-3 hydroxyl β-glycosylation of diosgenin and pennogenin. To further explore its catalytic characteristic, 15 substrates including steroids and triterpenes were selected and PpUGT2 showed its activity towards the C-17 position of sterol testosterone with UDP-glucose as sugar donor. Homology modelling and molecule docking of PpUGT2 with substrates predicted the key residues interacting with ligands. The re-levant residues of PpUGT2-ligand binding model were scanned to calculate the corresponding mutants, and the optimized mutants were obtained according to the changes in binding affinity of the ligand with protein and the surrounding residues within 5.0 Å of ligands, which had reference value for design of the mutants. This study laid a foundation for further exploring the biosynthetic pathway of polyphyllin as well as the structure of sterol glycosyltransferases.
Ligands
;
Glycosyltransferases/genetics*
;
Sterols
;
Phylogeny
;
Ascomycota
;
Liliaceae/chemistry*
;
Melanthiaceae
;
Diosgenin
;
Sugars
;
Glucose
;
Uridine Diphosphate
3.Effect of uridine on mitochondrial function.
Xueyi BAI ; Ding HUANG ; Pan XIE ; Ruiqiang SUN ; Hang ZHOU ; Yu LIU
Chinese Journal of Biotechnology 2023;39(9):3695-3709
Uridine is one of the essential nutrients in organisms. To maintain normal cell growth and intracellular metabolism, the uridine must be maintained at certain concentration. Recent studies have shown that uridine can reduce inflammatory response in organisms, participate in glycolysis, and regulate intracellular protein modification, such as glycosylation and acetylation. Furthermore, it can protect cells from hypoxic injury by reducing intracellular oxidative stress, promoting high-energy compounds synthesis. Previous studies have shown that the protective effects of uridine are closely related to its effect on mitochondria. This review summarizes the effect of uridine on mitochondrial function.
Uridine/metabolism*
;
Mitochondria/metabolism*
4.Mechanism of Zhenwu Decoction in improving renal inflammatory injury in mice with DN of spleen-kidney Yang deficiency syndrome by regulating ROCK/IKK/NF-κB pathway.
Yu-Qiu JIN ; Guang-Shun CHEN ; Min BAI ; Zhe ZHAO ; Yan-Xu CHEN ; Meng-Yuan TIAN ; Jia-Lian CHEN ; Qing-Sheng WANG ; Zhen-Hua LIU
China Journal of Chinese Materia Medica 2023;48(18):5041-5048
To investigate the intervention effect and mechanism of Zhenwu Decoction on diabetic nephropathy(DN) mice of spleen-kidney Yang deficiency syndrome based on the Rho-associated coiled-coil kinase(ROCK)/IκB kinase(IKK)/nuclear factor-κB(NF-κB) pathway. Ninety-five 7-week-old db/db male mice and 25 7-week-old db/m male mice were fed adaptively for one week. The DN model of spleen-kidney Yang deficiency syndrome was induced by Dahuang Decoction combined with hydrocortisone by gavage, and then the model was evaluated. After modeling, they were randomly divided into a model group, high-dose, medium-dose, and low-dose Zhenwu Decoction groups(33.8, 16.9, and 8.45 g·kg~(-1)·d~(-1)), and an irbesartan group(25 mg·kg~(-1)·d~(-1)), with at least 15 animals in each group. The intervention lasted for eight weeks. After the intervention, body weight and food intake were measured. Serum crea-tinine(Scr), blood urea nitrogen(BUN), fasting blood glucose(FBG), urinary albumin(uALb), and urine creatinine(Ucr) were determined. The uALb/Ucr ratio(ACR) and 24 h urinary protein(UTP) were calculated. Renal pathological morphology was evaluated by HE staining and Masson staining. The levels of key molecular proteins in the ROCK/IKK/NF-κB pathway were detected by Western blot. Enzyme-linked immunosorbent assay(ELISA) was used to detect interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-8(IL-8), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α). Compared with the blank group, the model group showed increased content of BUN, uALb, and SCr, increased values of 24 h UTP and ACR, decreased content of Ucr(P<0.05), enlarged glomeruli, thickened basement membrane, mesangial matrix proliferation, inflammatory cell infiltration, and collagen fiber deposition. The protein expression of ROCK1, ROCK2, IKK, NF-κB, phosphorylated IKK(p-IKK), phosphorylated NF-κB(p-NF-κB), and phosphorylated inhibitor of NF-κB(p-IκB) increased(P<0.05), while the protein expression of inhibitor of NF-κB(IκB) decreased(P<0.05). The levels of inflammatory factors IL-1β, IL-6, IL-8, and TNF-α increased(P<0.05), while the level of IL-10 decreased(P<0.05). Compared with the model group, the groups with drug treatment showed decreased levels of BUN, uALb, SCr, 24 h UTP, and ACR, increased level of Ucr(P<0.05), and improved renal pathological status to varying degrees. The high-and medium-dose Zhenwu Decoction groups and the irbesartan group showed reduced protein expression of ROCK1, ROCK2, IKK, NF-κB, p-IKK, p-NF-κB, and p-IκB in the kidneys(P<0.05), increased protein expression of IκB(P<0.05), decreased levels of serum inflammatory factors IL-1β, IL-6, IL-8, and TNF-α(P<0.05), and increased level of IL-10(P<0.05). Zhenwu Decoction can significantly improve renal function and renal pathological damage in DN mice of spleen-kidney Yang deficiency syndrome, and its specific mechanism may be related to the inhibition of inflammatory response by down-regulating the expression of key molecules in the ROCK/IKK/NF-κB pathway in the kidney.
Mice
;
Male
;
Animals
;
NF-kappa B/metabolism*
;
Interleukin-8
;
Interleukin-10
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6
;
I-kappa B Kinase
;
Spleen
;
Irbesartan
;
Uridine Triphosphate
;
Yang Deficiency/drug therapy*
;
Kidney/pathology*
5.Comprehensive evaluation of Pinellia ternata germplasm resources based on phenotypic trait classification.
Li LIU ; Xue FENG ; Jia-Lu WANG ; Jia-Lei CHEN ; Meng-Meng HOU ; Xiang-Yu ZHANG ; Kai-Yang LI ; Xi-Wen LI ; Shi-Lin CHEN
China Journal of Chinese Materia Medica 2023;48(24):6613-6623
The evaluation of germplasm resources is the prerequisite for the development, utilization, and conservation of Chinese medicinal resources. The selection of excellent germplasm is the key to the breeding and orderly production of Pinellia ternata. In this study, 21 germplasm materials of P. ternata from major production areas in China were collected and analyzed for population diversity after phenotypic preliminary screening. The results have revealed that the P. ternata population has abundant phenotypic variation, and the phenotypic changes could be divided into five phenotypes in terms of organ trait variation. Further analysis of variation in 20 quantitative traits of the population revealed that the coefficient of variation for adenosine content(339.05%) was the largest, while the coefficient of variation for the underground plant height(16.35%) was the smallest. Correlation analysis showed that there was a strong correlation among various traits, with 52 pairs of traits showing highly significant correlation(P<0.01) and 19 pairs of traits showing a significant correlation(P<0.05). The 21 germplasms in the test could be classified into three major clusters by cluster analysis, with Cluster Ⅱ having the highest number and content of nucleosides, making it suitable for the selection and breeding of P. ternata varieties with high content of nucleosides. The yield in Cluster Ⅲ was higher than that in other groups, making it suitable for the selection and breeding of P. ternata varieties with a high yield. All trait indicators could be simplified into five principal component factors through principal component analysis, and the cumulative contribution rate was up to 86.04%. Further, comprehensive analysis using membership function and stepwise regression analysis identified nine traits, such as plant height, main leaf length, and underground plant height as characteristic indicators for the comprehensive evaluation of germplasm resources of P. ternata. BX007, BX008, and BX005 were identified as germplasms with both high yield and high uridine content, with BX007 having the highest uridine content of 479.51 μg·g~(-1). It belonged to the germplasm of P. ternata with double bulbils and could be cultivated as a potential good variety. Based on the phenotypic classification of P. ternata, systematic resource evaluation was carried out in this study, which could lay a foundation for the excavation of genetic resources and the breeding of new varieties of P. ternata.
Plants, Medicinal
;
Pinellia/genetics*
;
Plant Breeding
;
Phenotype
;
Uridine
6.Clinical features of 6 children with uridine-responsive developmental epileptic encephalopathy 50 caused by CAD gene variants.
Ling ZHOU ; Fang FANG ; Jie DENG ; Shuang Jun LIU ; Chun Hong CHEN ; Hua LI ; Chang Hong REN ; Ye WU
Chinese Journal of Pediatrics 2023;61(5):453-458
Objective: To analyze the clinical features of children with uridine responsive developmental epileptic encephalopathy 50 (DEE50) caused by CAD gene variants. Methods: A retrospective study was conducted on 6 patients diagnosed with uridine-responsive DEE50 caused by CAD gene variants at Beijing Children's Hospital and Peking University First Hospital from 2018 to 2022. The epileptic seizures, anemia, peripheral blood smear, cranial magnetic resonance imaging (MRI), visual evoked potential (VEP), genotype features and the therapeutic effect of uridine were descriptively analyzed. Results: A total of 6 patients, including 3 boys and 3 girls, aged 3.5(3.2,5.8) years, were enrolled in this study. All patients presented with refractory epilepsy, anemia with anisopoikilocytosis and global developmental delay with regression. The age of epilepsy onset was 8.5 (7.5, 11.0) months, and focal seizures were the most common seizure type (6 cases). Anemia ranged from mild to severe. Four patients had peripheral blood smears prior to uridine administration, showing erythrocytes of variable size and abnormal morphology, and normalized at 6 (2, 8) months after uridine supplementation. Two patients suffered from strabismus, 3 patients had VEP examinations, indicating of suspicious optic nerve involvement, and normal fundus examinations. VEP was re-examined at 1 and 3 months after uridine supplementation, suggesting significant improvement or normalization. Cranial MRI were performed at 5 patients, demonstrating cerebral and cerebellar atrophy. They had cranial MRI re-examined after uridine treatment with a duration of 1.1 (1.0, 1.8) years, indicating significant improvement in brain atrophy. All patients received uridine orally at a dose of 100 mg/(kg·d), the age at initiation of uridine treatment was 1.0 (0.8, 2.5) years, and the duration of treatment was 2.4 (2.2, 3.0) years. Immediate cession of seizures was observed within days to a week after uridine supplementation. Four patients received uridine monotherapy and were seizure free for 7 months, 2.4 years, 2.4 years and 3.0 years respectively. One patient achieved seizure free for 3.0 years after uridine supplementation and had discontinued uridine for 1.5 years. Two patients were supplemented with uridine combined with 1 to 2 anti-seizure medications and had a reduced seizure frequency of 1 to 3 times per year, and they had achieved seizure free for 8 months and 1.4 years respectively. Conclusions: The clinical manifestations of DEE50 caused by CAD gene variants present a triad of refractory epilepsy, anemia with anisopoikilocytosis, and psychomotor retardation with regression, accompanied by suspected optic nerve involvement, all of which respond to uridine treatment. Prompt diagnosis and immediate uridine supplementation could lead to significant clinical improvement.
Male
;
Female
;
Humans
;
Child
;
Infant
;
Epilepsy/genetics*
;
Retrospective Studies
;
Drug Resistant Epilepsy
;
Uridine
;
Evoked Potentials, Visual
;
Anemia
;
Electroencephalography/adverse effects*
;
Neurodegenerative Diseases
7.Oxidative phosphorylation safeguards pluripotency via UDP-N-acetylglucosamine.
Jiani CAO ; Meng LI ; Kun LIU ; Xingxing SHI ; Ning SUI ; Yuchen YAO ; Xiaojing WANG ; Shiyu LI ; Yuchang TIAN ; Shaojing TAN ; Qian ZHAO ; Liang WANG ; Xiahua CHAI ; Lin ZHANG ; Chong LIU ; Xing LI ; Zhijie CHANG ; Dong LI ; Tongbiao ZHAO
Protein & Cell 2023;14(5):376-381
8.Construction of cell factories for high production of ginsenoside Rh_2 in Saccharomyces cerevisiae.
Yu-Song SHI ; Dong WANG ; Rong-Sheng LI ; Xue-Li ZHANG ; Zhu-Bo DAI
China Journal of Chinese Materia Medica 2022;47(3):651-658
Ginsenoside Rh_2 is a rare active ingredient in precious Chinese medicinal materials such as Ginseng Radix et Rhizoma, Notoginseng Radix et Rhizoma, and Panacis Quinquefolii Radix. It has important pharmacological activities such as anti-cancer and improving human immunity. However, due to the extremely low content of ginsenoside Rh_2 in the source plants, the traditional way of obtaining it has limitations. This study intended to apply synthetic biological technology to develop a cell factory of Saccharomyces cerevisiae to produce Rh_2 by low-cost fermentation. First, we used the high protopanaxadiol(PPD)-yielding strain LPTA as the chassis strain, and inserted the Panax notoginseng enzyme gene Pn1-31, together with yeast UDP-glucose supply module genes[phosphoglucose mutase 1(PGM1), α-phosphoglucose mutase(PGM2), and uridine diphosphate glucose pyrophosphorylase(UGP1)], into the EGH1 locus of yeast chromosome. The engineered strain LPTA-RH2 produced 17.10 mg·g~(-1) ginsenoside Rh_2. This strain had low yield of Rh_2 while accumulated much precursor PPD, which severely restricted the application of this strain. In order to further improve the production of ginsenoside Rh_2, we strengthened the UDP glucose supply module and ginsenoside Rh_2 synthesis module by engineered strain LPTA-RH2-T. The shaking flask yield of ginsenoside Rh_2 was increased to 36.26 mg·g~(-1), which accounted for 3.63% of the dry weight of yeast cells. Compared with those of the original strain LPTA-RH2, the final production and the conversion efficiency of Rh_2 increased by 112.11% and 65.14%, respectively. This study provides an important basis for further obtaining the industrial-grade cell factory for the production of ginsenoside Rh_2.
Fermentation
;
Ginsenosides
;
Humans
;
Panax/genetics*
;
Panax notoginseng
;
Saccharomyces cerevisiae/genetics*
;
Uridine Diphosphate Glucose
9.Concomitant use of immobilized uridine-cytidine kinase and polyphosphate kinase for 5'-cytidine monophosphate production.
Sijia WU ; Jie LI ; Chenlong HU ; Junyu TIAN ; Tong ZHANG ; Ning CHEN ; Xiaoguang FAN
Chinese Journal of Biotechnology 2020;36(5):1002-1011
Uridine-cytidine kinase, an important catalyst in the compensation pathway of nucleotide metabolism, can catalyze the phosphorylation reaction of cytidine to 5'-cytidine monophosphate (CMP), but the reaction needs NTP as the phosphate donor. To increase the production efficiency of CMP, uridine-cytidine kinase gene from Thermus thermophilus HB8 and polyphosphate kinase gene from Rhodobacter sphaeroides were cloned and expressed in Escherichia coli BL21(DE3). Uridine-cytidine kinase was used for the generation of CMP from cytidine and ATP, and polyphosphate kinase was used for the regeneration of ATP. Then, the D403 metal chelate resin was used to adsorb Ni²⁺ to form an immobilized carrier, and the immobilized carrier was specifically combined with the recombinant enzymes to form the immobilized enzymes. Finally, single-factor optimization experiment was carried out to determine the reaction conditions of the immobilized enzyme. At 30 °C and pH 8.0, 60 mmol/L cytidine and 0.5 mmol/L ATP were used as substrates to achieve 5 batches of high-efficiency continuous catalytic reaction, and the average molar yield of CMP reached 91.2%. The above method has the advantages of low reaction cost, high product yield and high enzyme utilization rate, and has good applied value for industrial production.
Cytidine Monophosphate
;
metabolism
;
Escherichia coli
;
genetics
;
Industrial Microbiology
;
methods
;
Phosphotransferases (Phosphate Group Acceptor)
;
metabolism
;
Uridine Kinase
10.Correlation of UGT2B7 Polymorphism with Cardiotoxicity in Breast Cancer Patients Undergoing Epirubicin/Cyclophosphamide-Docetaxel Adjuvant Chemotherapy.
Hai LI ; Bo HU ; Zhe GUO ; Xueqing JIANG ; Xinyu SU ; Xiaoyi ZHANG
Yonsei Medical Journal 2019;60(1):30-37
PURPOSE: The present study aimed to investigate correlations between uridine glucuronosyltransferase 2B7 (UGT2B7) -161 single nucleotide polymorphism C to T (C>T) and the occurrence of cardiotoxicity in Chinese breast cancer (BC) patients undergoing epirubicin/cyclophosphamide-docetaxel (EC-D) adjuvant chemotherapy. MATERIALS AND METHODS: 427 BC patients who had underwent surgery were consecutively enrolled in this prospective cohort study. All patients were scheduled to receive EC-D adjuvant chemotherapy regimen, and they were divided into UGT2B7 -161 CC (n=141), UGT2B7 -161 CT (n=196), and UGT2B7 -161 TT (n=90) groups according to their genotypes. Polymerase chain reaction was performed for determination of UGT2B7 -161 genotypes. Cardiotoxicity was defined as an absolute decline in left ventricular ejection fraction (LVEF) of at least 10% points from baseline to a value less than 53%, heart failure, acute coronary artery syndrome, or fatal arrhythmia. RESULTS: LVEF values were lower at cycle (C) 4, C8, 3 months after chemotherapy (M3), M6, M9, and M12 compared to C0 (all p < 0.001), in BC patients undergoing EC-D adjuvant chemotherapy. Cardiotoxicity was recorded for 4.2% of the overall population and was lowest in the UGT2B7 -161 TT group (1.1%), compared to UGT2B7 -161 CT (3.1%) and UGT2B7 -161 CC (7.8%) group (p=0.026). Multivariate logistic regression revealed that UGT2B7 -161 T allele could independently predict a low occurrence of cardiotoxicity in BC patients undergoing EC-D adjuvant chemotherapy (p=0.004). CONCLUSION: A UGT2B7 -161 T allele serves as a potential biomarker for predicting a low occurrence of cardiotoxicity in BC patients undergoing EC-D adjuvant chemotherapy.
Alleles
;
Arrhythmias, Cardiac
;
Asian Continental Ancestry Group
;
Breast Neoplasms*
;
Breast*
;
Cardiotoxicity*
;
Chemotherapy, Adjuvant*
;
Cohort Studies
;
Coronary Vessels
;
Drug Therapy
;
Genotype
;
Glucuronosyltransferase
;
Heart Failure
;
Humans
;
Logistic Models
;
Polymerase Chain Reaction
;
Polymorphism, Single Nucleotide
;
Prospective Studies
;
Stroke Volume
;
Uridine

Result Analysis
Print
Save
E-mail