1.Study on the Role and Mechanism of METTL3 Mediating the Up-regulation of m6A Modified Long Non-coding RNA THAP7-AS1 in Promoting the Occurrence of Lung Cancer.
Yu ZHANG ; Yanhong WANG ; Mei LIU
Chinese Journal of Lung Cancer 2024;26(12):919-933
BACKGROUND:
Lung cancer is a major threat to human health. The molecular mechanisms related to the occurrence and development of lung cancer are complex and poorly known. Exploring molecular markers related to the development of lung cancer is helpful to improve the effect of early diagnosis and treatment. Long non-coding RNA (lncRNA) THAP7-AS1 is known to be highly expressed in gastric cancer, but has been less studied in other cancers. The aim of the study is to explore the role and mechanism of methyltransferase-like 3 (METTL3) mediated up-regulation of N6-methyladenosine (m6A) modified lncRNA THAP7-AS1 expression in promoting the development of lung cancer.
METHODS:
Samples of 120 lung cancer and corresponding paracancerous tissues were collected. LncRNA microarrays were used to analyze differentially expressed lncRNAs. THAP7-AS1 levels were detected in lung cancer, adjacent normal tissues and lung cancer cell lines by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The diagnostic value of THAP7-AS1 in lung cancer and the relationship between THAP7-AS1 expression and survival rate and clinicopathological parameters were analyzed. Bioinformatics analysis, methylated RNA immunoprecipitation (meRIP), RNA pull-down and RNA-immunoprecipitation (RIP) assay were used to investigate the molecular regulation mechanism of THAP7-AS1. Cell proliferation, migration, invasion and tumorigenesis of SPC-A-1 and NCI-H1299 cells were determined by MTS, colony-formation, scratch, Transwell and xenotransplantation in vivo, respectively. Expression levels of phosphoinositide 3-kinase/protein kenase B (PI3K/AKT) signal pathway related protein were detected by Western blot.
RESULTS:
Expression levels of THAP7-AS1 were higher in lung cancer tissues and cell lines (P<0.05). THAP7-AS1 has certain diagnostic value in lung cancer [area under the curve (AUC)=0.737], and its expression associated with overall survival rate, tumor size, tumor-node-metastasis (TNM) stage and lymph node metastasis (P<0.05). METTL3-mediated m6A modification enhanced THAP7-AS1 expression. The cell proliferation, migration, invasion and the volume and mass of transplanted tumor were all higher in the THAP7-AS1 group compared with the NC group and sh-NC group of SPC-A-1 and NCI-H1299 cells, while the cell proliferation, migration and invasion were lower in the sh-THAP7-AS1 group (P<0.05). THAP7-AS1 binds specifically to Cullin 4B (CUL4B). The cell proliferation, migration, invasion, and expression levels of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), phosphoinositide-3 kinase, catalytic subunit delta (PIK3CD), phospho-phosphatidylinositol 3-kinase (p-PI3K), phospho-protein kinase B (p-AKT) and phospho-mammalian target of rapamycin (p-mTOR) were higher in the THAP7-AS1 group compared with the Vector group of SPC-A-1 and NCI-H1299 cells (P<0.05).
CONCLUSIONS
LncRNA THAP7-AS1 is stably expressed through m6A modification mediated by METTL3, and combines with CUL4B to activate PI3K/AKT signal pathway, which promotes the occurrence and development of lung cancer.
Humans
;
Lung Neoplasms/pathology*
;
RNA, Long Noncoding/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Up-Regulation
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
;
Methyltransferases/metabolism*
;
Cullin Proteins/genetics*
2.Upregulation of IL-18 expression in blood CD4+ Th2 cells of patients with allergic rhinitis.
Junling WANG ; Huanzhang SHAO ; Ling YE ; Yijie ZHANG ; Bingyu QIN
Chinese Journal of Cellular and Molecular Immunology 2023;39(12):1100-1107
Objective To investigate the expressions of IL-18, IL-18 binding protein isoform a (IL-18BPa) and IL-18 receptor α (IL-18Rα) in blood CD4+ Th2 cells of patients with allergic rhinitis (AR) and the effects of allergens on their expressions. Methods Blood samples of AR patients and healthy control subjects (HCs) were collected. Peripheral blood mononuclear cells (PBMCs) and CD4+ T cells sorted by immunomagnetic beads were stimulated by crude extract of Artemisia sieversiana wild allergen (ASWE), Platanus pollen (PPE) and house dust mite extract (HDME). Flow cytometry was used to detect the expression of IL-18, IL-18BPa and IL-18Rα in CD4+ Th2 cells, and BioPlex was used to detect the level of plasma IL-4 and analyze its correlation with the proportion of IL-18+ Th2 cells. Results Compared with HCs, the proportion of IL-18+ cells was increased in Th2 cells of AR patients; MFI of IL-18 was increased, while that of IL-18Rα was decreased. Moreover, allergens induced IL-18 and IL-18Rα expression in sorted CD4+ Th2 cells of HCs and induced IL-18Rα in that of AR patients. Additionally, elevated plasma IL-4 level was found in AR patients, which was moderately correlated with the percentage of IL-18+ Th2 cells. Conclusion Allergens may be involved in the pathogenesis of AR by inducing expression of IL-18 in peripheral blood CD4+ Th2 cells.
Humans
;
Th2 Cells
;
Interleukin-18/metabolism*
;
Up-Regulation
;
Leukocytes, Mononuclear/metabolism*
;
Interleukin-4/metabolism*
;
Rhinitis, Allergic/metabolism*
;
Allergens
;
Cytokines/metabolism*
3.Oral administration of Bifidobacterium breve improves anti-angiogenic drugs-derived oral mucosal wound healing impairment via upregulation of interleukin-10.
Qingxiang LI ; Yuke LI ; Qiao QIAO ; Ning ZHAO ; Yuanning YANG ; Lin WANG ; Yifei WANG ; Chuanbin GUO ; Yuxing GUO
International Journal of Oral Science 2023;15(1):56-56
Recent studies have suggested that long-term application of anti-angiogenic drugs may impair oral mucosal wound healing. This study investigated the effect of sunitinib on oral mucosal healing impairment in mice and the therapeutic potential of Bifidobacterium breve (B. breve). A mouse hard palate mucosal defect model was used to investigate the influence of sunitinib and/or zoledronate on wound healing. The volume and density of the bone under the mucosal defect were assessed by micro-computed tomography (micro-CT). Inflammatory factors were detected by protein microarray analysis and enzyme-linked immunosorbent assay (ELISA). The senescence and biological functions were tested in oral mucosal stem cells (OMSCs) treated with sunitinib. Ligated loop experiments were used to investigate the effect of oral B. breve. Neutralizing antibody for interleukin-10 (IL-10) was used to prove the critical role of IL-10 in the pro-healing process derived from B. breve. Results showed that sunitinib caused oral mucosal wound healing impairment in mice. In vitro, sunitinib induced cellular senescence in OMSCs and affected biological functions such as proliferation, migration, and differentiation. Oral administration of B. breve reduced oral mucosal inflammation and promoted wound healing via intestinal dendritic cells (DCs)-derived IL-10. IL-10 reversed cellular senescence caused by sunitinib in OMSCs, and IL-10 neutralizing antibody blocked the ameliorative effect of B. breve on oral mucosal wound healing under sunitinib treatment conditions. In conclusion, sunitinib induces cellular senescence in OMSCs and causes oral mucosal wound healing impairment and oral administration of B. breve could improve wound healing impairment via intestinal DCs-derived IL-10.
Animals
;
Mice
;
Interleukin-10
;
Bifidobacterium breve
;
Up-Regulation
;
Angiogenesis Inhibitors
;
Sunitinib
;
X-Ray Microtomography
;
Administration, Oral
;
Wound Healing
;
Antibodies, Neutralizing
4.Ultrashort wave alleviates oxygen -glucose deprivation/reoxygenation injury via up -regulation of SPCA1 expression in N2a cells.
Jinling TANG ; Rumi WANG ; Yongmei FAN ; Changjie ZHANG ; Ying KONG
Journal of Central South University(Medical Sciences) 2023;48(5):641-647
OBJECTIVES:
Application of ultrashort wave (USW) to rats with cerebral ischemia and reperfusion injury could inhibit the decrease of expression of secretory pathway Ca2+-ATPase 1 (SPCA1), an important participant in Golgi stress, reduce the damage of Golgi apparatus and the apoptosis of neuronal cells, thereby alleviating cerebral ischemia-reperfusion injury. This study aims to investigate the effect of USW on oxygen-glucose deprivation/reperfusion (OGD/R) injury and the expression of SPCA1 at the cellular level.
METHODS:
N2a cells were randomly divided into a control (Con) group, an OGD/R group, and an USW group. The cells in the Con group were cultured without exposure to OGD. The cells in the OGD/R group were treated with OGD/R. The cells in the USW group were treated with USW after OGD/R. Cell morphology was observed under the inverted phase-contrast optical microscope, cell activity was detected by cell counting kit-8 (CCK-8), apoptosis was detected by flow cytometry, and SPCA1 expression was detected by Western blotting.
RESULTS:
Most of the cells in the Con group showed spindle shape with a clear outline and good adhesion. In the OGD/R group, cells were wrinkled, with blurred outline, poor adhesion, and lots of suspended dead cells appeared; compared with the OGD/R group, the cell morphology and adherence were improved, with clearer outlines and fewer dead cells in the USW group. Compared with the Con group, the OGD/R group showed decreased cell activity, increased apoptotic rate, and down-regulating SPCA1 expression with significant differences (all P<0.001); compared with the OGD/R group, the USW group showed increased cell activity, decreased apoptotic rate, and up-regulating SPCA1 expression with significant differences (P<0.01 or P<0.001).
CONCLUSIONS
USW alleviates the injury of cellular OGD/R, and its protective effect may be related to its up-regulation of SPCA1 expression.
Animals
;
Rats
;
Apoptosis
;
Brain Ischemia
;
Glucose/metabolism*
;
Oxygen/metabolism*
;
Reperfusion Injury/metabolism*
;
Transcriptional Activation
;
Up-Regulation
;
Calcium-Transporting ATPases/metabolism*
5.Thalamocortical Circuit Controls Neuropathic Pain via Up-regulation of HCN2 in the Ventral Posterolateral Thalamus.
Yi YAN ; Mengye ZHU ; Xuezhong CAO ; Gang XU ; Wei SHEN ; Fan LI ; Jinjin ZHANG ; Lingyun LUO ; Xuexue ZHANG ; Daying ZHANG ; Tao LIU
Neuroscience Bulletin 2023;39(5):774-792
The thalamocortical (TC) circuit is closely associated with pain processing. The hyperpolarization-activated cyclic nucleotide-gated (HCN) 2 channel is predominantly expressed in the ventral posterolateral thalamus (VPL) that has been shown to mediate neuropathic pain. However, the role of VPL HCN2 in modulating TC circuit activity is largely unknown. Here, by using optogenetics, neuronal tracing, electrophysiological recordings, and virus knockdown strategies, we showed that the activation of VPL TC neurons potentiates excitatory synaptic transmission to the hindlimb region of the primary somatosensory cortex (S1HL) as well as mechanical hypersensitivity following spared nerve injury (SNI)-induced neuropathic pain in mice. Either pharmacological blockade or virus knockdown of HCN2 (shRNA-Hcn2) in the VPL was sufficient to alleviate SNI-induced hyperalgesia. Moreover, shRNA-Hcn2 decreased the excitability of TC neurons and synaptic transmission of the VPL-S1HL circuit. Together, our studies provide a novel mechanism by which HCN2 enhances the excitability of the TC circuit to facilitate neuropathic pain.
Animals
;
Mice
;
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics*
;
Neuralgia
;
RNA, Small Interfering
;
Thalamus/metabolism*
;
Up-Regulation
6.Lactate-induced up-regulation of PLEKHA4 promotes proliferation and apoptosis of human glioma cells.
Jingjing YE ; Wenqin XU ; Bangsheng XI ; Nengqian WANG ; Tianbing CHEN
Journal of Southern Medical University 2023;43(7):1071-1080
OBJECTIVE:
To investigate the effect of lactic acid-induced upregulation of PLEKHA4 expression on biological behaviors of glioma cells and the possible molecular mechanism.
METHODS:
GEO database and GEPIA2 website were used to analyze the relationship between PLEKHA4 expression level and the pathological grade of glioma. A specific PLEKHA4 siRNA was transfected in glioma U251 and T98G cells, and the changes in cell proliferation ability were assessed by real-time cell analysis technology and Edu experiment. The colony-forming ability of the cells was evaluated using plate cloning assay, and cell cycle changes and cell apoptosis were analyzed with flow cytometry. The mRNA expression of PLEKHA4 was detected by PCR in glioma samples and controls and in glioma cells treated with lactic acid and glucose. Xenograft mice in vivo was used to detect tumor formation in nude mice; Western blotting was used to detect the expressions of cyclinD1, CDK2, Bcl2, β-catenin and phosphorylation of the key proteins in the MAPK signaling pathway.
RESULTS:
The results of GEO database and online website analysis showed that PLEKHA4 was highly expressed in glioma tissues and was associated with poor prognosis; PLEKHA4 knockdown obviously inhibited the proliferation and attenuated the clone-forming ability of the glioma cells (P < 0.05). Flow cytometry showed that PLEKHA4 knockdown caused cell cycle arrest in G1 phase and promoted apoptosis of the cells (P < 0.01). PLEKHA4 gene mRNA expression was increased in glioma samples and glioma cells after lactate and glucose treatment (P < 0.01). PLEKHA4 knockdown, tumor formation ability of nude mice decreased; PLEKHA4 knockdown obviously lowered the expression of cyclinD1, CDK2, Bcl2 and other functional proteins, inhibited the phosphorylation of ERK and p38 and reduced the expression of β-catenin protein (P < 0.01).
CONCLUSION
PLEKHA4 knockdown inhibited the proliferation of glioma cells and promoted apoptosis by inhibiting the activation of the MAPK signaling pathway and expression of β-catenin. Lactic acid produced by glycolysis upregulates the expression of PLEKHA4 in glioma cells.
Humans
;
Animals
;
Mice
;
Up-Regulation
;
beta Catenin/metabolism*
;
Mice, Nude
;
Brain Neoplasms/pathology*
;
Lactic Acid
;
Cell Line, Tumor
;
Glioma/pathology*
;
Cell Proliferation
;
Apoptosis
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
RNA, Messenger/genetics*
;
Gene Expression Regulation, Neoplastic
7.miRNA-128-3p inhibits malignant behavior of glioma cells by downregulating KLHDC8A expression.
Zhengtao YU ; Jiameng LI ; Junwen JIANG ; You LI ; Long LIN ; Ying XIA ; Lei WANG
Journal of Southern Medical University 2023;43(9):1447-1459
OBJECTIVE:
To determine whether miRNA-128-3p regulates malignant biological behavior of glioma cells by targeting KLHDC8A.
METHODS:
Dual-luciferase reporter assays, qRT-PCR and Western blotting were used to verify the targeting of miRNA-128-3p to KLHDC8A. Edu assay, flow cytometry, Transwell assay and would healing assay were used to determine the effects of changes in miRNA-128-3p and KLHDC8A expression levels on malignant behavior of glioma cells. Rescue experiment was carried out to verify that miRNA-128-3p regulated glioma cell proliferation, apoptosis, invasion and migration by targeting KLHDC8A.
RESULTS:
The expression level of KLHDC8A was significantly increased in high-grade glioma tissue and was closely related to a poor survival outcome of the patients. Overexpression of KLHDC8A promoted glioma cell proliferation, migration and invasion, and miRNA-128-3p overexpression inhibited proliferative and metastatic capacities of glioma cells. Mechanistically, KLHDC8A expression was directly modulated by miRNA-128-3p, which, by targeting KLHDC8A, inhibited malignant behavior of glioma cells.
CONCLUSION
Upregulation of miRNA-128-3p inhibits uncontrolled growth of glioma cells by negatively regulating KLHDC8A expression and its downstream effectors, suggesting that the miRNA-128-3p-KLHDC8A axis may serve as a potential prognostic indicator and a therapeutic target for developing new strategies for glioma treatment.
Humans
;
Apoptosis
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
Glioma/pathology*
;
MicroRNAs/metabolism*
;
Up-Regulation
8.CD36 gene deletion reduces muscle insulin sensitivity in mice by up-regulating PTP1B expression.
Lin CHEN ; Han ZENG ; Hong QIN ; Xiong Zhong RUAN ; Ping YANG
Journal of Southern Medical University 2022;42(3):392-398
OBJECTIVE:
To investigate the effect CD36 deficiency on muscle insulin signaling in mice fed a normal-fat diet and explore the possible mechanism.
METHODS:
Wild-type (WT) mice and systemic CD36 knockout (CD36-/-) mice with normal feeding for 14 weeks (n=12) were subjected to insulin tolerance test (ITT) after intraperitoneal injection with insulin (1 U/kg). Real-time PCR was used to detect the mRNA expressions of insulin receptor (IR), insulin receptor substrate 1/2 (IRS1/2) and protein tyrosine phosphatase 1B (PTP1B), and Western blotting was performed to detect the protein expressions of AKT, IR, IRS1/2 and PTP1B in the muscle tissues of the mice. Tyrosine phosphorylation of IR and IRS1 and histone acetylation of PTP1B promoter in muscle tissues were detected using co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP), respectively.
RESULTS:
CD36-/- mice showed significantly lowered insulin sensitivity with obviously decreased area under the insulin tolerance curve in comparison with the WT mice (P < 0.05). CD36-/- mice also had significantly higher serum insulin concentration and HOMA-IR than WT mice (P < 0.05). Western blotting showed that the p-AKT/AKT ratio in the muscle tissues was significantly decreased in CD36-/- mice as compared with the WT mice (P < 0.01). No significant differences were found in mRNA and protein levels of IR, IRS1 and IRS2 in the muscle tissues between WT and CD36-/- mice (P>0.05). In the muscle tissue of CD36-/- mice, tyrosine phosphorylation levels of IR and IRS1 were significantly decreased (P < 0.05), and the mRNA and protein levels of PTP1B (P < 0.05) and histone acetylation level of PTP1B promoters (P < 0.01) were significantly increased as compared with those in the WT mice. Intraperitoneal injection of claramine, a PTP1B inhibitor, effectively improved the impairment of insulin sensitivity in CD36-/- mice.
CONCLUSION
CD36 is essential for maintaining muscle insulin sensitivity under physiological conditions, and CD36 gene deletion in mice causes impaired insulin sensitivity by up-regulating muscle PTP1B expression, which results in detyrosine phosphorylation of IR and IRS1.
Animals
;
Gene Deletion
;
Histones/genetics*
;
Insulin
;
Insulin Receptor Substrate Proteins/metabolism*
;
Insulin Resistance/genetics*
;
Membrane Cofactor Protein/genetics*
;
Mice
;
Mice, Knockout
;
Muscles/metabolism*
;
Phosphoric Monoester Hydrolases/metabolism*
;
Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
RNA, Messenger/metabolism*
;
Receptor, Insulin/metabolism*
;
Tyrosine/genetics*
;
Up-Regulation
9.Estradiol inhibits differentiation of mouse macrophage into a pro-inflammatory phenotype by upregulating the IRE1α-XBP1 signaling axis.
Ling Jian ZHUO ; Shuo Chen WANG ; Xing LIU ; Bao An CHEN ; Xiang LI
Journal of Southern Medical University 2022;42(3):432-437
OBJECTIVE:
To explore the mechanism by which estradiol modulates the immunophenotype of macrophages through the endoplasmic reticulum stress pathway.
METHODS:
Peritoneal macrophages isolated from C57 mice were cultured in the presence of 60 ng/mL interferon-γ (IFN-γ) followed by treatment with estradiol (1.0 nmol/L) alone, estradiol with estrogen receptor antagonist (Acolbifene, 4 nmol/L), estradiol with IRE1α inhibitor (4 μ 8 C), or estradiol with IRE1α agonist. After the treatments, the expression levels of MHC-Ⅱ, iNOS and endoplasmic reticulum stress marker proteins IRE1α, eIF2α and ATF6 in the macrophages were detected with Western blotting, and the mRNA levels of TGF-β, IL-6, IL-10 and TNF-α were detected with RT-PCR.
RESULTS:
Estrogen treatment of the macrophages significantly decreased the expressions of M1-related proteins MHC-Ⅱ (P=0.021) and iNOS (P < 0.001) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.004), increased the mRNA expression of TGF-β (P=0.002) and IL-10 (P=0.008), and up-regulated the protein expressions of IRE1α (P < 0.001) and its downstream transcription factor XBP-1 (P < 0.001). Addition of the estrogen inhibitor obviously blocked the effect of estrogen. Compared with estrogen treatment alone, combined treatment of the macrophages with estrogen and the IRE1α inhibitor 4 μ 8 C significantly up-regulated the protein expressions of MHC-Ⅱ (P=0.002) and iNOS (P=0.003) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.024), and obviously down-regulated the mRNA expression of TGF-β (P < 0.001) and IL-10 (P < 0.001); these changes were not observed in cells treated with estrogen and the IRE1α agonist.
CONCLUSION
Estrogen can inhibit the differentiation of murine macrophages into a pro-inflammatory phenotype by up-regulating the IRE1α-XBP-1 signaling axis, thereby producing an inhibitory effect on inflammatory response.
Animals
;
Cell Differentiation/drug effects*
;
Endoribonucleases/metabolism*
;
Estradiol/pharmacology*
;
Estrogens/metabolism*
;
Interleukin-10
;
Interleukin-6/metabolism*
;
Macrophages, Peritoneal/metabolism*
;
Mice
;
Phenotype
;
Protein Serine-Threonine Kinases/metabolism*
;
RNA, Messenger/metabolism*
;
Signal Transduction/drug effects*
;
Transforming Growth Factor beta/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Up-Regulation/drug effects*
;
X-Box Binding Protein 1/metabolism*
10.The distribution of Mas-related G protein-coupled receptor A in cerebrospinal fluid-contacting nucleus of normal rats and its up-regulation in neuropathic pain.
Yu-Feng CHEN ; En-Qi TIAN ; Guo-Ping WANG ; Fang ZHOU ; Li-Cai ZHANG
Acta Physiologica Sinica 2022;74(3):353-358
This study was aimed to observe the distribution of Mas-related G protein-coupled receptor A (MrgA) in cerebrospinal fluid (CSF)-contacting nucleus of normal rats and its expression in neuropathic pain, and to provide morphological evidence for CSF-contacting nucleus to participate in neuropathic pain. The model of neuropathic pain with chronic constriction injury (CCI) of the sciatic nerve was made in Sprague-Dawley rats. The thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) were measured. The expressions of MrgA in the CSF-contacting nucleus were examined by double labeling with immunofluorescent staining. The results showed that on the 5th, 7th, 10th and 14th days, the values of MWT and TWL in CCI group were all lower than those in sham group (P < 0.05). MrgA was found to be distributed in CSF-contacting nucleus of normal rats; and the expression was markedly up-regulated in rats at the peak of neuropathic pain. Our data suggest that CSF-contacting nucleus may participate in neuropathic pain through the MrgA-mediated signaling pathway.
Animals
;
Neuralgia
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, G-Protein-Coupled/metabolism*
;
Staphylococcal Protein A/metabolism*
;
Up-Regulation

Result Analysis
Print
Save
E-mail