1.Carfilzomib inhibits the growth of lung adenocarcinoma via upregulation of Gadd45a expression.
Fang YANG ; Wang-Wang LIU ; Hui CHEN ; Jia ZHU ; Ai-Hua HUANG ; Fei ZHOU ; Yi GAN ; Yan-Hua ZHANG ; Li MA
Journal of Zhejiang University. Science. B 2020;21(1):64-76
		                        		
		                        			
		                        			Proteasome inhibitors have shown remarkable success in the treatment of hematologic neoplasm. There has been a lot of attention to applying these drugs for solid tumor treatment. Recent preclinical study has signified the effectiveness on cell proliferation inhibition in lung adenocarcinoma treated by carfilzomib (CFZ), a second generation proteasome inhibitor. However, no insight has been gained regarding the mechanism. In this study, we have systematically investigated the CFZ functions in cell proliferation and growth, cell cycle arrest, and apoptosis in lung adenocarcinoma cells. Flow cytometry experiments showed that CFZ significantly induced G2/M cell cycle arrest and apoptosis in lung adenocarcinoma. MTS and colony formation assays revealed that CFZ substantially inhibited survival of lung adenocarcinoma cells. All results were consistently correlated to the upregulation expression of Gadd45a, which is an important gene in modulating cell cycle arrest and apoptosis in response to physiologic and environmental stresses. Here, upregulation of Gadd45a expression was observed after CFZ treatment. Knocking down Gadd45a expression suppressed G2/M arrest and apoptosis in CFZ-treated cells, and reduced cytotoxicity of this drug. The protein expression analysis has further identified that the AKT/FOXO3a pathway is involved in Gadd45a upregulation after CFZ treatment. These findings unveil a novel mechanism of proteasome inhibitor in anti-solid tumor activity, and shed light on novel preferable therapeutic strategy for lung adenocarcinoma. We believe that Gadd45a expression can be a highly promising candidate predictor in evaluating the efficacy of proteasome inhibitors in solid tumor therapy.
		                        		
		                        		
		                        		
		                        			Adenocarcinoma of Lung/pathology*
		                        			;
		                        		
		                        			Apoptosis/drug effects*
		                        			;
		                        		
		                        			Cell Cycle Checkpoints/drug effects*
		                        			;
		                        		
		                        			Cell Cycle Proteins/genetics*
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Forkhead Box Protein O3/physiology*
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic/drug effects*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lung Neoplasms/pathology*
		                        			;
		                        		
		                        			Oligopeptides/pharmacology*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/physiology*
		                        			;
		                        		
		                        			Up-Regulation
		                        			
		                        		
		                        	
2.Overexpression of Dlx2 enhances osteogenic differentiation of BMSCs and MC3T3-E1 cells via direct upregulation of Osteocalcin and Alp.
Jianfei ZHANG ; Wenbin ZHANG ; Jiewen DAI ; Xudong WANG ; Steve Guofang SHEN
International Journal of Oral Science 2019;11(2):12-12
		                        		
		                        			
		                        			Genetic studies have revealed a critical role of Distal-homeobox (Dlx) genes in bone formation, and our previous study showed that Dlx2 overexpressing in neural crest cells leads to profound abnormalities of the craniofacial tissues. The aim of this study was to investigate the role and the underlying molecular mechanisms of Dlx2 in osteogenic differentiation of mouse bone marrow stromal cells (BMSCs) and pre-osteoblast MC3T3-E1 cells. Initially, we observed upregulation of Dlx2 during the early osteogenesis in BMSCs and MC3T3-E1 cells. Moreover, Dlx2 overexpression enhanced alkaline phosphatase (ALP) activity and extracellular matrix mineralization in BMSCs and MC3T3-E1 cell line. In addition, micro-CT of implanted tissues in nude mice confirmed that Dlx2 overexpression in BMSCs promoted bone formation in vivo. Unexpectedly, Dlx2 overexpression had little impact on the expression level of the pivotal osteogenic transcription factors Runx2, Dlx5, Msx2, and Osterix, but led to upregulation of Alp and Osteocalcin (OCN), both of which play critical roles in promoting osteoblast maturation. Importantly, luciferase analysis showed that Dlx2 overexpression stimulated both OCN and Alp promoter activity. Through chromatin-immunoprecipitation assay and site-directed mutagenesis analysis, we provide molecular evidence that Dlx2 transactivates OCN and Alp expression by directly binding to the Dlx2-response cis-acting elements in the promoter of the two genes. Based on these findings, we demonstrate that Dlx2 overexpression enhances osteogenic differentiation in vitro and accelerates bone formation in vivo via direct upregulation of the OCN and Alp gene, suggesting that Dlx2 plays a crucial role in osteogenic differentiation and bone formation.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Core Binding Factor Alpha 1 Subunit
		                        			;
		                        		
		                        			Homeodomain Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mesenchymal Stem Cells
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Nude
		                        			;
		                        		
		                        			Osteoblasts
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Osteocalcin
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Osteogenesis
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Transcription Factors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Up-Regulation
		                        			
		                        		
		                        	
3.Electroacupuncture Alleviates Motor Symptoms and Up-Regulates Vesicular Glutamatergic Transporter 1 Expression in the Subthalamic Nucleus in a Unilateral 6-Hydroxydopamine-Lesioned Hemi-Parkinsonian Rat Model.
Yanyan WANG ; Yong WANG ; Junhua LIU ; Xiaomin WANG
Neuroscience Bulletin 2018;34(3):476-484
		                        		
		                        			
		                        			Previous studies have shown that electroacupuncture (EA) promotes recovery of motor function in Parkinson's disease (PD). However the mechanisms are not completely understood. Clinically, the subthalamic nucleus (STN) is a critical target for deep brain stimulation treatment of PD, and vesicular glutamate transporter 1 (VGluT1) plays an important role in the modulation of glutamate in the STN derived from the cortex. In this study, a 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD was treated with 100 Hz EA for 4 weeks. Immunohistochemical analysis of tyrosine hydroxylase (TH) showed that EA treatment had no effect on TH expression in the ipsilateral striatum or substantia nigra pars compacta, though it alleviated several of the parkinsonian motor symptoms. Compared with the hemi-parkinsonian rats without EA treatment, the 100 Hz EA treatment significantly decreased apomorphine-induced rotation and increased the latency in the Rotarod test. Notably, the EA treatment reversed the 6-OHDA-induced down-regulation of VGluT1 in the STN. The results demonstrated that EA alleviated motor symptoms and up-regulated VGluT1 in the ipsilateral STN of hemi-parkinsonian rats, suggesting that up-regulation of VGluT1 in the STN may be related to the effects of EA on parkinsonian motor symptoms via restoration of function in the cortico-STN pathway.
		                        		
		                        		
		                        		
		                        			Adrenergic Agents
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apomorphine
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Dopamine Agonists
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Electroacupuncture
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Functional Laterality
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Medial Forebrain Bundle
		                        			;
		                        		
		                        			injuries
		                        			;
		                        		
		                        			Motor Activity
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Neurons
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Oxidopamine
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Parkinson Disease, Secondary
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Subthalamic Nucleus
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Tyrosine 3-Monooxygenase
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Up-Regulation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Vesicular Glutamate Transport Protein 1
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
4.Involvement of NF-κB and the CX3CR1 Signaling Network in Mechanical Allodynia Induced by Tetanic Sciatic Stimulation.
Zhe-Chen WANG ; Li-Hong LI ; Chao BIAN ; Liu YANG ; Ning LV ; Yu-Qiu ZHANG
Neuroscience Bulletin 2018;34(1):64-73
		                        		
		                        			
		                        			Tetanic stimulation of the sciatic nerve (TSS) triggers long-term potentiation in the dorsal horn of the spinal cord and long-lasting pain hypersensitivity. CX3CL1-CX3CR1 signaling is an important pathway in neuronal-microglial activation. Nuclear factor κB (NF-κB) is a key signal transduction molecule that regulates neuroinflammation and neuropathic pain. Here, we set out to determine whether and how NF-κB and CX3CR1 are involved in the mechanism underlying the pathological changes induced by TSS. After unilateral TSS, significant bilateral mechanical allodynia was induced, as assessed by the von Frey test. The expression of phosphorylated NF-κB (pNF-κB) and CX3CR1 was significantly up-regulated in the bilateral dorsal horn. Immunofluorescence staining demonstrated that pNF-κB and NeuN co-existed, implying that the NF-κB pathway is predominantly activated in neurons following TSS. Administration of either the NF-κB inhibitor ammonium pyrrolidine dithiocarbamate or a CX3CR1-neutralizing antibody blocked the development and maintenance of neuropathic pain. In addition, blockade of NF-κB down-regulated the expression of CX3CL1-CX3CR1 signaling, and conversely the CX3CR1-neutralizing antibody also down-regulated pNF-κB. These findings suggest an involvement of NF-κB and the CX3CR1 signaling network in the development and maintenance of TSS-induced mechanical allodynia. Our work suggests the potential clinical application of NF-κB inhibitors or CX3CR1-neutralizing antibodies in treating pathological pain.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antibodies
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Antioxidants
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			CX3C Chemokine Receptor 1
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cytokines
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Enzyme Inhibitors
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Ganglia, Spinal
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Hyperalgesia
		                        			;
		                        		
		                        			etiology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Nerve Tissue Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Pain Threshold
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Physical Stimulation
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			Proline
		                        			;
		                        		
		                        			analogs & derivatives
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Sciatic Nerve
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Spinal Cord
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Thiocarbamates
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Up-Regulation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			physiology
		                        			
		                        		
		                        	
5.Calpain mediated pulmonary vascular remodeling in hypoxia induced pulmonary hypertension.
Weifang ZHANG ; Tiantian ZHU ; Aizhen XIONG ; Xiaoyue GE ; Ruilai XU ; Shegui LU ; Changping HU
Journal of Central South University(Medical Sciences) 2016;41(9):929-936
		                        		
		                        			OBJECTIVE:
		                        			To explore the role of calpain in pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension and the underlying mechanisms.
		                        		
		                        			METHODS:
		                        			Sprague-Dawley rats were randomly divided into the hypoxia group and the normoxia control group. Right ventricular systolic pressure (RVSP) and mean pulmonary artery pressure (mPAP) were monitored by a method with right external jugular vein cannula. Right ventricular hypertrophy index was presented as the ratio of right ventricular weight to left ventricular weight (left ventricle plus septum weight). Levels of calpain-1, -2 and -4 mRNA in pulmonary artery were determined by real-time PCR. Levels of calpain-1, -2 and -4 protein were determined by Western blot. Primary rat pulmonary arterial smooth muscle cells (PASMCs) were divided into 4 groups: a normoxia control group, a normoxia+MDL28170 group, a hypoxia group and a hypoxia+MDL28170 group. Cell proliferation was detected by MTS and flow cytometry. Levels of Ki-67 and proliferating cell nuclear antigen (PCNA) mRNA were determined by real-time PCR.
		                        		
		                        			RESULTS:
		                        			RVSP, mPAP and right ventricular remodeling index were significantly elevated in the hypoxia group compared to those in the normoxia group. In the hypoxia group, pulmonary vascular remodeling was significantly developed, accompanied by up-regulation of calpain-1, -2 and -4. MDL28170 significantly inhibited hypoxia-induced proliferation of PASMCs concomitant with the suppression of Ki-67 and PCNA mRNA expression.
		                        		
		                        			CONCLUSION
		                        			Calpain mediates vascular remodeling via promoting proliferation of PASMCs in hypoxia-induced pulmonary hypertension.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Calpain
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Dipeptides
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Hypertension, Pulmonary
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Hypertrophy, Right Ventricular
		                        			;
		                        		
		                        			Hypoxia
		                        			;
		                        		
		                        			Ki-67 Antigen
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Myocytes, Smooth Muscle
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Proliferating Cell Nuclear Antigen
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Pulmonary Artery
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Real-Time Polymerase Chain Reaction
		                        			;
		                        		
		                        			Up-Regulation
		                        			;
		                        		
		                        			Vascular Remodeling
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			physiology
		                        			
		                        		
		                        	
6.In vitro study of TGF-β1-induced epithelial-mesenchymal transition of keloid epithelial cells.
Li YAN ; Rui CAO ; Bo PAN ; Lianzhao WANG ; Xiaoyan LYU ; Xuejian SUN ; Ran XIAO
Chinese Journal of Plastic Surgery 2015;31(2):128-133
OBJECTIVETo construct and characterize the TGF-β1, induced epithelial-mesenchymal transition (EMT) model of keloid epithelial cells in vitro, and to investigate the expression of epithelial stem cells related surface markers in keloid epithelial cells during EMT induction.
METHODSThe epithelial cells from 3 keloid samples of ears were cultured in vitro and induced by transforming growth factor betal (TGF-β1, 1 ng/ml) for 5 days, which was the experimental group, the same cells untreated were considered as the negative control group. The expressions of EMT-associated markers and regulative genes were detected using immunofluorescence staining, real-time PCR and western blot analysis. Then the surface markers of epithelial stem cells were detected using real-time PCR. Statistical significance was determined using Independent-Samples t Test, a p value less than 0. 05 was considered statistically significant.
RESULTSThe mRNA expression of transcription factor snail2 and mesenchymal-specific marker vimentin increased significantly in TGF-β1, induced keloid epithelial cells (P < 0. 05), in which snail2 increasing from 0. 91 ± 0. 23 to 1. 69 ± 0. 10, and vimentin from 5. 86 ± 2. 07 to 24. 29 ± 5. 39. Whereas the mRNA expression of epithelial-specific marker E-cadherin decreased from 1. 06 ± 0. 19 to 0. 65 ± 0. 09. The mRNA expression of CD29 and Lgr6, two surface markers of epithelial stem cells, significantly increased after induction of the TGF-β1, (P < 0. 05), from 0. 55 ± 0. 14 and 1. 61 ± 0. 31 to 1. 19 ± 0. 12 and 3. 84 t 0. 62 respectively. In induced cells, the immunofluorescence results showed staining of E- cadherin became faint, but the number of positive staining cells of vimentin increased. Western blot confirmed the protein expression of E-cadherin weakened, and the vimentin and p-Smad3 enhanced (P < 0. 05).
CONCLUSIONSTGF-β1, initiated EMT in keloid epithelial cells by inducing the up-regulation of snail2, and TGF-β1,/Smad3 signaling pathway was involved in EMT. EMT could change the phenotype of epithelial stem cells in keloid.
Biomarkers ; metabolism ; Cadherins ; genetics ; metabolism ; Epithelial Cells ; drug effects ; physiology ; Epithelial-Mesenchymal Transition ; drug effects ; physiology ; Humans ; In Vitro Techniques ; Keloid ; pathology ; RNA, Messenger ; metabolism ; Signal Transduction ; Smad3 Protein ; genetics ; metabolism ; Snail Family Transcription Factors ; Transcription Factors ; genetics ; metabolism ; Transforming Growth Factor beta1 ; metabolism ; pharmacology ; Up-Regulation ; Vimentin ; genetics ; metabolism
7.Impact of morphine on the reproductivity of male rats.
Qing-Zhen LIU ; Yong SHAO ; Xue-Jun SHANG ; Wei-Yan LI
National Journal of Andrology 2014;20(12):1073-1076
OBJECTIVETo explore the effect of morphine on male reproductive ability and its mechanisms in the rat model of morphine tolerance.
METHODSTwenty male SD rats were equally randomized to groups I (control) and II (morphine tolerance). On the 1st day, the basic paw withdrawal thermal latency (PWTL) was obtained from all the rats followed by subcutaneous injection of morphine at 10 mg/kg and then calculation of the percentage of the maximal possible effect (MPE) at 30 min after administration. On the 2nd day, the rats of group I were injected subcutaneously with saline and those of group I with morphine at 10 mg/kg bid for 7 days. Then all the rats were killed after behavioral tests and their testes and epididymides harvested for sperm counting and determina- tion of the expressions of Bax and Caspase-3 by immunohistochemistry.
RESULTSOn the 1st day, no obvious differences were ob- served between the two groups in the basic PWTL or the percentage of MPE. On the 7th day, the percentage of MPE was significantly decreased in group II as compared with group I (P < 0.05), while the basic PWTL showed no marked difference between the two groups. Group II also exhibited a significantly reduced epididymal perm count (P < 0.05) and remarkably upregulated expressions of Bax and Caspase-3 in comparison with group I.
CONCLUSIONMorphine might increase testicular cell apoptosis and reduce sperm concentration by upregulating the expressions of Bax and Caspase-3 in the rat model of morphine tolerance.
Analgesics, Opioid ; pharmacology ; Animals ; Caspase 3 ; metabolism ; Drug Tolerance ; physiology ; Hot Temperature ; Male ; Morphine ; pharmacology ; Random Allocation ; Rats ; Reproduction ; drug effects ; Sperm Count ; Testis ; drug effects ; Time Factors ; Up-Regulation ; bcl-2-Associated X Protein ; metabolism
8.Prevention of bone loss by injection of insulin-like growth factor-1 after sciatic neurectomy in rats.
Chinese Journal of Traumatology 2013;16(3):158-162
OBJECTIVEInjection of insulin-like growth factor-1 (IGF-1) can prevent bone loss in sciatic nerve transaction rats. We try to investigate the action mechanism of IGF-1 on bone formation.
METHODSA total of 40 adult male Spragne-Dawley rats were divided into two groups (experimental group and control group) with 20 animals in each. Sciatic neurectomy was performed to model disuse osteoporosis in all rats. IGF-1 was administered in experimental group with the dose of 100 microgramme/kilogram per day for 3 days. Meanwhile, the rats in control group were treated with saline. Bone mineral density was measured by dual-energy X-ray absorptiometry 4 and 6 weeks after neurectomy respectively. Expression of Osterix and Runx2 was determined by reverse transcription-polymerase chain reaction (RT-PCR) assay.
RESULTSThere was a significant increase in the bone mineral density of experimental group compared with control group. There was a significant decrease in the level of receptor activator of nuclear factor-kappaB-ligand but an increase in the level of osteoprotegerin 4 and 6 weeks after neurectomy in the experimental group compared with control one. The expression of Osterix and Runx2 was up-regulated in the bone marrow of experimental group compared with control group.
CONCLUSIONIGF-1 can increase bone formation by stimulation of osteoblast number and activity, and reduce bone resorption by restriction of differentiation of osteoclast, suggesting that IGF-1 may improve the therapeutic efficacy for disuse osteoporosis.
Animals ; Bone Density ; drug effects ; Bone Resorption ; prevention & control ; Cell Differentiation ; Core Binding Factor Alpha 1 Subunit ; metabolism ; Immunohistochemistry ; Injections ; Insulin-Like Growth Factor I ; administration & dosage ; Male ; Osteoblasts ; drug effects ; Rats ; Rats, Sprague-Dawley ; Sciatic Nerve ; surgery ; Transcription Factors ; metabolism ; Up-Regulation ; physiology
9.Kurarinone promotes TRAIL-induced apoptosis by inhibiting NF-kappaB-dependent cFLIP expression in HeLa cells.
Ok Won SEO ; Jung Hwan KIM ; Kwang Soon LEE ; Kyu Sun LEE ; Ji Hee KIM ; Moo Ho WON ; Kwon Soo HA ; Young Guen KWON ; Young Myeong KIM
Experimental & Molecular Medicine 2012;44(11):653-664
		                        		
		                        			
		                        			This study was designed to investigate the effects of the prenylated flavonoid kurarinone on TNF-related apoptosis inducing ligand (TRAIL)-induced apoptosis and its underlying mechanism. A low dose of kurarinone had no significant effect on apoptosis, but this compound markedly promoted tumor cell death through elevation of Bid cleavage, cytochrome c release and caspase activation in HeLa cells treated with TRAIL. Caspase inhibitors inhibited kurarinone-mediated cell death, which indicates that the cytotoxic effect of this compound is mediated by caspase-dependent apoptosis. The cytotoxic effect of kurarinone was not associated with expression levels of Bcl-2 and IAP family proteins, such as Bcl-2, Bcl-xL, Bid, Bad, Bax, XIAP, cIAP-1 and cIAP-2. In addition, this compound did not regulate the death-inducing receptors DR4 and DR5. On the other hand, kurarinone significantly inhibited TRAIL-induced IKK activation, IkappaB degradation and nuclear translocation of NF-kappaB, as well as effectively suppressed cellular FLICE-inhibitory protein long form (cFLIPL) expression. The synergistic effects of kurarinone on TRAIL-induced apoptosis were mimicked when kurarinone was replaced by the NF-kappaB inhibitor withaferin A or following siRNA-mediated knockdown of cFLIPL. Moreover, cFLIP overexpression effectively antagonized kurarinone-mediated TRAIL sensitization. These data suggest that kurarinone sensitizes TRAIL-induced tumor cell apoptosis via suppression of NF-kappaB-dependent cFLIP expression, indicating that this compound can be used as an anti-tumor agent in combination with TRAIL.
		                        		
		                        		
		                        		
		                        			Antineoplastic Agents/*pharmacology
		                        			;
		                        		
		                        			Apoptosis/*drug effects
		                        			;
		                        		
		                        			CASP8 and FADD-Like Apoptosis Regulating Protein/*genetics/metabolism
		                        			;
		                        		
		                        			Caspase 3/metabolism
		                        			;
		                        		
		                        			Caspase 8/metabolism
		                        			;
		                        		
		                        			Drug Synergism
		                        			;
		                        		
		                        			Enzyme Activation/drug effects
		                        			;
		                        		
		                        			Flavonoids/*pharmacology
		                        			;
		                        		
		                        			Gene Expression/drug effects
		                        			;
		                        		
		                        			Gene Knockdown Techniques
		                        			;
		                        		
		                        			HeLa Cells
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			NF-kappa B/antagonists & inhibitors/*metabolism
		                        			;
		                        		
		                        			Protein Transport/drug effects
		                        			;
		                        		
		                        			RNA, Small Interfering/genetics
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			TNF-Related Apoptosis-Inducing Ligand/*physiology
		                        			;
		                        		
		                        			Up-Regulation/drug effects
		                        			
		                        		
		                        	
10.Anticolchicine cytotoxicity enhanced by Dan Gua-Fang, a Chinese herb prescription in ECV304 in mediums.
Xian-Pei HENG ; Ke-Ji CHEN ; Zhen-Feng HONG ; Wei-Dong HE ; Ke-Dan CHU ; Wen-Lie CHEN ; Hai-Xia ZHENG ; Liu-Qing YANG ; Ling CHEN ; Fang GUO
Chinese journal of integrative medicine 2011;17(2):126-133
OBJECTIVETo study the effect of anticolchicine cytotoxicity of Dan Gua-Fang, a Chinesea Chinese), a Chinese herbal compound prescription on endothelial cells of vein (ECV304) cultivated in mediums of different glucose concentrations as well as the proliferation of those cells in the same conditions, in order to reveal the value of Dan Gua-Fang in preventing and treating endothelial damage caused by hyperglycemia in diabetes mellitus.
METHODSThe research was designed as three stages. The growing state and morphological changes were observed when ECV304 were cultivated in the culture mediums, which have different glucose concentrations with or without Dan Gua-Fang and at the same time with or without colchicine.
RESULTS(1) Dan Gua-Fang at all concentrations reduced the floating cell population of ECV304 cultivated in hyperglycemia mediums. (2) Dan Gua-Fang at all concentrations and hyperglycemia both had a function of promoting "pseudopod-like" structure formation in cultivated ECV304, but the function was not superimposed in mediums containing both hyperglycemia and Dan Gua-Fang. (3) Colchicine reduced and even vanished the "pseudopod-like" structure of the endotheliocyte apparently cultivated in mediums of hyperglycemia or with Dan Gua-Fang. The "pseudopod-like" structure of the endotheliocyte emerged quickly in Dan Gua-Fang groups after colchicine was removed, but it was not the case in hyperglycemia only without Dan Gua-Fang groups. (4) Dan Gua-Fang reduced the mortality of cells cultivated in mediums containing colchicine. The cell revived to its normal state fast after colchicine was removed.
CONCLUSIONDan Gua-Fang has the functions of promoting the formation of cytoskeleton and fighting against colchicine cytotoxicity.
Cell Culture Techniques ; Cell Line ; Cell Shape ; drug effects ; Colchicine ; adverse effects ; antagonists & inhibitors ; Culture Media ; adverse effects ; pharmacology ; Cytoprotection ; drug effects ; Cytotoxins ; adverse effects ; antagonists & inhibitors ; Drug Antagonism ; Drug Combinations ; Drug Evaluation, Preclinical ; Drug Synergism ; Drugs, Chinese Herbal ; adverse effects ; pharmacology ; Endothelial Cells ; drug effects ; physiology ; Glucose ; pharmacology ; Humans ; Umbilical Veins ; cytology ; drug effects ; Up-Regulation
            
Result Analysis
Print
Save
E-mail