1.Porphyromonas gingivalis infection causes umbilical vein endothelial barrier dysfunction in vitro by down-regulating ZO-1, occludin and VE-cadherin expression.
Jiao ZENG ; Xin Zhu LI ; Lin Ying YIN ; Ting CHEN ; Jin HOU
Journal of Southern Medical University 2023;43(2):287-293
		                        		
		                        			OBJECTIVE:
		                        			To explore the molecular mechanisms of Porphyromonas gingivalis infection-induced umbilical vein endothelial barrier dysfunction in vitro.
		                        		
		                        			METHODS:
		                        			Human umbilical vein endothelial cells (HUVECs) were cultured in vitro, and after the formation of the endothelial barrier, the cells were infected with P. gingivals at a multiplicity of infection (MOI). The transepithelial electrical resistance (TEER) of the cell barrier was measured, and FITC-dextran trans-endothelial permeability assay and bacterial translocation assay were performed to assess the endothelial barrier function. The expression levels of cell junction proteins including ZO-1, occludin and VE-cadherin in the cells were examined by qRT-PCR and Western blotting.
		                        		
		                        			RESULTS:
		                        			In freshly seeded HUVECs, TEER increased until reaching the maximum on Day 5 (94 Ωcm2), suggesting the formation of the endothelial barrier. P. gingivals infection caused an increase of the permeability of the endothelial barrier as early as 0.5 h after bacterial inoculation, and the barrier function further exacerbated with time, as shown by significantly lowered TEER, increased permeability of FITC-dextran (40 000/70 000), and increased translocation of SYTO9-E. coli cross the barrier. MTT assay suggested that P. gingivals infection did not significantly affect the proliferation of HUVECs (P>0.05), but in P. gingivalsinfected cells, the expressions of ZO-1, occludin and VE-cadherin increased significantly at 24 and 48 h after bacterial inoculation (P < 0.05).
		                        		
		                        			CONCLUSION
		                        			P. gingivals may disrupt the endothelial barrier function by down-regulating the expressions of the cell junction proteins (ZO-1, occludin, VE-cadherin) and increasing the permeability of the endothelial barrier.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Cadherins/metabolism*
		                        			;
		                        		
		                        			Escherichia coli/metabolism*
		                        			;
		                        		
		                        			Human Umbilical Vein Endothelial Cells/metabolism*
		                        			;
		                        		
		                        			Occludin
		                        			;
		                        		
		                        			Porphyromonas gingivalis/metabolism*
		                        			;
		                        		
		                        			Umbilical Veins/metabolism*
		                        			
		                        		
		                        	
2.Effects of Danhong Injection (丹红注射液) and its main components on anticoagulation and fibrinolysis in cultured vein endothelial cells.
Yu-yan ZHANG ; Hui-fen ZHOU ; Jie-hong YANG ; Yu HE ; Xiao-qiang CHEN ; Katsuyoshi NISHINARI ; Hao-fang WAN ; Hai-tong WAN
Chinese journal of integrative medicine 2016;22(4):276-283
OBJECTIVETo observe the effects of Danhong Injection (丹红注射液) and its main components, including daiclzein and hydroxysafflor yellow A (HSYA), on the anticoagulation, fibrinolysis, anti-apoptosis in hypoxia model of vein endothelial cells (VECs).
METHODSVECs were prepared and were put in a hypoxia environment, which consisted of mixed gas of 95% N and 5% CO mixed gas, when reached confluent culture. Five groups used different treatments, including normal control group, hypoxia group, daiclzein group, HSYA group and Danhong Injection group. The VECs were identified by fluorescence double labeling methods. The morphology was observed by a phase contrast microscopy. The effects of Danhong Injection, daiclzein and HSYA on 6 keto prostaglandin F1α (6-keto-PGF1α) level was measured by the method of radioimmunoassay (RIA). Superoxide dismutase (SOD) activity was tested by water soluble tetrazolium salt. The content of malondialdehyde (MDA) was measured by thiobarbituric acid. The activities of tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI) were measured by the method of chromogenic substrate. The contents of endothelin (ET) and nitric oxide (NO) were detected by non-equilibrium RIA and enzymelinked immunosorbent assay. Cells apoptosis rate was determined by flow cytometry.
RESULTSCompared with the normal control group, the floating cells number, PAI activity, ET and MDA contents, and cells apoptosis rate in the culture solution of hypoxia group were all significantly increased, whereas the 6-keto-PGF1α and NO contents, and t-PA and SOD activities were decreased significantly (P<0.01). Compared with the hypoxia group, Danhong Injection markedly increased the 6-keto-PGF1α content and SOD activity, regulated PAI and t-PA activities, ET and NO contents, and decreased MDA content and cells apoptosis rate (P<0.05 or P<0.01).
CONCLUSIONSDanhong Injection and its main components played an important role in protecting primary VECs from hypoxic damage by regulating the secretion and vasomotor function of VECs. The function of Danhong Injection was most remarkable.
6-Ketoprostaglandin F1 alpha ; metabolism ; Animals ; Apoptosis ; drug effects ; Blood Coagulation ; drug effects ; Cell Count ; Cells, Cultured ; Drugs, Chinese Herbal ; pharmacology ; Endothelial Cells ; drug effects ; metabolism ; Endothelins ; metabolism ; Factor VIII ; metabolism ; Fibrinolysis ; drug effects ; Fluorescent Antibody Technique ; Humans ; Infant, Newborn ; Injections ; Malondialdehyde ; metabolism ; Nitric Oxide ; metabolism ; Plasminogen Inactivators ; metabolism ; Rabbits ; Superoxide Dismutase ; metabolism ; Tissue Plasminogen Activator ; metabolism ; Umbilical Veins ; cytology
3.Decreased C-reactive protein induces abnormal vascular structure in a rat model of liver dysfunction induced by bile duct ligation.
Ji Hye JUN ; Jong Ho CHOI ; Si Hyun BAE ; Seh Hoon OH ; Gi Jin KIM
Clinical and Molecular Hepatology 2016;22(3):372-381
		                        		
		                        			
		                        			BACKGROUND/AIMS: Chronic liver disease leads to liver fibrosis, and although the liver does have a certain regenerative capacity, this disease is associated with dysfunction of the liver vessels. C-reactive protein (CRP) is produced in the liver and circulated from there for metabolism. CRP was recently shown to inhibit angiogenesis by inducing endothelial cell dysfunction. The objective of this study was to determine the effect of CRP levels on angiogenesis in a rat model of liver dysfunction induced by bile duct ligation (BDL). METHODS: The diameter of the hepatic vein was analyzed in rat liver tissues using hematoxylin and eosin (H&E) staining. The expression levels of angiogenic factors, albumin, and CRP were analyzed by real-time PCR and Western blotting. A tube formation assay was performed to confirm the effect of CRP on angiogenesis in human umbilical vein endothelial cells (HUVECs) treated with lithocholic acid (LCA) and siRNA-CRP. RESULTS: The diameter of the hepatic portal vein increased significantly with the progression of cirrhosis. The expression levels of angiogenic factors were increased in the cirrhotic liver. In contrast, the expression levels of albumin and CRP were significantly lower in the liver tissue obtained from the BDL rat model than in the normal liver. The CRP level was correlated with the expression of albumin in hepatocytes treated with LCA and siRNA-CRP. Tube formation was significantly decreased in HUVECs when they were treated with LCA or a combination of LCA and siRNA-CRP. CONCLUSION: CRP seems to be involved in the abnormal formation of vessels in hepatic disease, and so it could be a useful diagnostic marker for hepatic disease.
		                        		
		                        		
		                        		
		                        			Angiogenic Proteins/genetics/metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bile Ducts/surgery
		                        			;
		                        		
		                        			C-Reactive Protein/*analysis/genetics/metabolism
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Hepatic Veins/abnormalities
		                        			;
		                        		
		                        			Hepatocytes/cytology/metabolism
		                        			;
		                        		
		                        			Human Umbilical Vein Endothelial Cells
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lithocholic Acid/pharmacology
		                        			;
		                        		
		                        			Liver/metabolism/pathology
		                        			;
		                        		
		                        			Liver Cirrhosis/etiology
		                        			;
		                        		
		                        			Liver Diseases/metabolism/*pathology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Microscopy, Fluorescence
		                        			;
		                        		
		                        			Mitochondria/drug effects/metabolism
		                        			;
		                        		
		                        			RNA Interference
		                        			;
		                        		
		                        			RNA, Small Interfering/metabolism
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Real-Time Polymerase Chain Reaction
		                        			;
		                        		
		                        			Serum Albumin/genetics/metabolism
		                        			
		                        		
		                        	
4.Effect of ASO Blood Stasis Syndrome Serum on Vascular Endothelial Cell Injury and Regulation of Taohong Siwu Decoction on it.
Xin LI ; Da-yong LI ; Wen-na CHEN ; Yang ZHANG ; Bao-qing LIU ; Shi-zheng LI ; Jun-jie HOU
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(11):1373-1377
OBJECTIVETo explore the effect of arteriosclerosis obliterans (ASO) blood stasis syndrome (BSS) serum on vascular endothelial cell injury and to study the regulation of Taohong Siwu Decoction (TSD) on it.
METHODSUmbilical vein endothelial cell culture system was established. The serum endothelial cell injury model with ASO BSS was prepared. Low, medium, and high concentrations TSD containing serums were respectively added. The endothelial cell proliferation activity was observed by MTT method. Ultrastructures of endothelial cells were observed under transmission electron microscope. Changes of intracellular calcium ion concentration and the cytoskeleton were observed under laser confocal microscope. Contents of ET, NO, and transforming growth factor beta1 (TGF-beta1) in endothelial cell culture supernatant were detected by ELISA.
RESULTSIn ASO BSS serum group endothelial cell proliferation activities decreased, the cell structure was obviously destroyed, calcium ion concentration increased, contents of ET, NO and TGF-beta1 increased significantly (P < 0.01), and ET/NO ratio was imbalanced. After incubating with TSD drug containing serum, endothelial cell proliferation activities and injured cell structures were obviously improved; ET, NO and TGF-beta1 levels decreased (P < 0.05, P < 0.01), ET/NO ratios approximated to the normal level.
CONCLUSIONThe main mechanism of TSD for treating ASO ASS lied in improving injured vascular endothelial cells and endocrine disorder.
Arteriosclerosis Obliterans ; Cell Proliferation ; Drugs, Chinese Herbal ; therapeutic use ; Endothelial Cells ; Humans ; Medicine, Chinese Traditional ; Serum ; Transforming Growth Factor beta1 ; metabolism ; Umbilical Veins
5.Prevention and Treatment of Atherosclerosis by Three Different Chinese Medical Compounds: a Mechanism Study.
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(10):1244-1248
OBJECTIVETo study the effect of Buyang Huanwu Decoction (BHD), Xuefu Zhuyu Decoction (XZD), and Sijunzi Decoction (SD) contained serums on expressions of Toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB signals, lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), tumor necrosis factor-α (TNF-α), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and to explore possible anti-atherosclerotic mechanisms.
METHODSTwenty New Zealand rabbits were divided into 4 groups at random, i.e., the normal control group, the BHD group (6.7 g/kg), the XZD group (3.6 g/kg), and the SD group (1.6 g/kg), 5 in each group. All medication lasted for 7 successive days. Two h after the final medication, about 50 mL blood was withdrawn from rabbit heart for preparing serums. Human umbilical vein endothelial cell ECV304 were cultured in vitro for 18 h and randomly divided into the blank control group, the model group, the Western medicine (WM) control group, the BHD group, the XZD group, and the SD group at random. ECV304, except in the blank control group, were stimulated with lipopolysaccharide (LPS) for 2 h. Those in the WM control group and CM groups were treated respectively with corresponding CM contained serum for 24 h. Finally gene and protein expressions of TLR4, myeloid differentiation factor 88 (MyD88), tumor necrosis factor receptor-associated factor-6 (TRAF-6), NF-κB, LOX-1, TNF-α, ICAM-1, and VCAM-1 were detected by fluorescent quantitative PCR and Western blot.
RESULTSCompared with the blank control group, mRNA expressions of TLR4, MyD88, TRAF-6, NF-KB, LOX-1 , TNF-cx, ICAM-1, and VCAM-1 increased significantly; protein expressions of TLR4, NF-κB, LOX-1, TNF-α, ICAM-1, and VCAM-1 also increased significantly in the model group (P < 0.01). Compared with the model group, mRNA and protein expressions of each index could be significantly inhibited in the BHD group, the XZD group, and the WM control group (P < 0.05). Besides, mRNA and protein expressions of each index could be significantly elevated more in the BHD group and the XZD group than in the WM control group (P < 0.05). No statistical difference existed in each index between the SD group and the rest groups (P > 0.05).
CONCLUSIONSThe mechanism of BHD and XZD for fighting against atherosclerosis might be associated with inhibiting TLR4/NF-κB signal transduction pathway and expressions of its downstream inflammatory factors such as LOX-1, TNF-α, ICAM-1, and VCAM-1. But SD showed no associated effect on atherosclerosis.
Animals ; Atherosclerosis ; drug therapy ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Endothelial Cells ; Intercellular Adhesion Molecule-1 ; metabolism ; Lipopolysaccharides ; Myeloid Differentiation Factor 88 ; metabolism ; NF-kappa B ; metabolism ; Rabbits ; Scavenger Receptors, Class E ; Signal Transduction ; TNF Receptor-Associated Factor 6 ; metabolism ; Toll-Like Receptor 4 ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism ; Umbilical Veins ; Vascular Cell Adhesion Molecule-1 ; metabolism
6.The effect of Connexin43 downregulation on biological functions of HUVEC.
Cai-zhen ZHANG ; Xiao-feng MU ; Xian-xiang XU ; Fei QIU ; Jun-sheng LIN ; Yong DIAO
Acta Pharmaceutica Sinica 2015;50(3):298-304
		                        		
		                        			
		                        			Connexin43 has been shown to play a pivotal role in wound healing process. Wound repair is enhanced by acute downregulation of connexin43, by increasing proliferation and migration of keratinocyte and fibroblast. Angiogenesis is also a central feature of wound repair, but little is known about the effects of connexin43 modulation on functions of endothelial cells. We used connexin43 specific small interference RNA (siRNA) to reduce the expression of connexin43 in human umbilical vein endothelial cell (HUVEC), and investigated the effects of connexin43 downregulation on intercellular communication, viability, proliferation, migration and angiogenic activity of HUVEC. Treatment of siRNA markedly reduced the expression of connexin43 by -80% in HUVEC (P < 0.05), and decreased the intercellular communication by -65% (P < 0.05). The viability, proliferation, migration and angiogenic activity of HUVEC decreased significantly (P < 0.05), compared with that of the normal cells. The results suggest that temporally downregulation of connexin43 expression at early stage of wound to inhibit the abnormal angiogenesis characterized with leaky and inflamed blood vessels, maybe a prerequisite for coordinated normal healing process.
		                        		
		                        		
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cell Survival
		                        			;
		                        		
		                        			Connexin 43
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Down-Regulation
		                        			;
		                        		
		                        			Human Umbilical Vein Endothelial Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Neovascularization, Physiologic
		                        			;
		                        		
		                        			Umbilical Veins
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Wound Healing
		                        			
		                        		
		                        	
7.Effects of propranolol on proliferation of hemangioma-derived mesenchymal stem cells .
Zhao TINGHUI ; Ma XIAORONG ; Huang YINGYING ; Chen HUIPING ; Xiao YAN ; Ouyang TIANXIANG
Chinese Journal of Plastic Surgery 2014;30(5):373-377
OBJECTIVETo explore the new mechanism of propranolol for treatment of hemangioma and the effects of propranolol on proliferation of hemangioma-derived mesenchymal stem cells ( Hem- MSCs).
METHODSWe isolated Hem-MSCs from hemangioma in the proliferating phase by their selective adhesion to plastic culture dishes. Immunofluorescence staining was used to examine the expression of marker antigens in Hem-MSCs. Human umbilical vein endothelial cells(HUVECs) were used as control. Indiuction of multi-lineage differentiation including osteogenesis and adipogeneis was performed with appropriate medium to identify the multi-lineage differentiation potential. MTT cell counting was used to observe the effects of different concentrations of propranolol on proliferation of Hem-MSCs.
RESULTSHem- MSCs were fibroblast-like morphology. All of them expressed vimentin, most expressed α-SMA,CD133, some expressed Glutl, and none of them expressed VEGF. Osteogenic, adipogenic differentiations of Hem- MSCs were induced successfully. Effects of low concentration of propranolol on proliferation of Hem-MSCs were not obvious, while high concentration of propranolol can inhibit the proliferation of Hem-MSCs.
CONCLUSIONSThe cells we isolated from hemangioma are Hem-MSCs. High concentration of propranolol can inhibit the proliferation of Hem-MSCs.
Adipogenesis ; Antigens ; metabolism ; Cell Differentiation ; Cell Proliferation ; drug effects ; Cells, Cultured ; Endothelium, Vascular ; cytology ; Fibroblasts ; cytology ; Hemangioma ; pathology ; Humans ; Mesenchymal Stromal Cells ; cytology ; drug effects ; metabolism ; Osteogenesis ; Propranolol ; pharmacology ; Umbilical Veins ; Vimentin ; metabolism
8.Effects of danshen on NO and ET-1 secreted by endothelial cells induced by the serum of pre-eclampsia patients.
Zhong-fang ZHANG ; Bing LI ; Dun-jin CHEN
Chinese Journal of Integrated Traditional and Western Medicine 2013;33(4):538-540
OBJECTIVETo explore the protective effects of danshen (Salvia Miltiorrhiza) on vascular endothelial cells in hypertension patients in the gestation period.
METHODSThe umbilical vein endothelial cells pre-incubated with Danshen solution at different concentrations (0, 100, 200, and 300 mg/L) were randomly divided into 3 groups, i.e., the blank control group (8 cases), the normal control group (14 cases, cultured in the serum from 14 normal pregnant women), and the observation group (14 cases, cultured in the serum from 14 pregnant women with severe pre-eclampsia). The levels of nitric oxide (NO) and endothelin-1 (ET-1) in each culture supernatant were detected respectively.
RESULTSThe ET-1 level was higher in 300 mg/L Danshen solution group than in 0 mg/L and 100 mg/L Danshen solution groups (P <0.05). The NO level was lower in the observation group than in the blank control group and the normal control group (P <0. 05). The NO level was higher in 200 mg/L Danshen solution group than in 0 mg/L Danshen solution group (P <0.05). The NO level was higher in 300 mg/L Danshen solution group than in 0 mg/L, 100 mg/L, and 200 mg/L Danshen solution groups (P <0.05).
CONCLUSIONDanshen could increase the secretion of NO from in vitro umbilical vein endothelial cells cultured in the serum from patients with pre-eclampsia, and reduce the secretion of ET-1.
Cells, Cultured ; Culture Media ; chemistry ; Drugs, Chinese Herbal ; pharmacology ; Endothelial Cells ; cytology ; drug effects ; secretion ; Endothelin-1 ; metabolism ; Female ; Humans ; Nitric Oxide ; metabolism ; Phenanthrolines ; pharmacology ; Pre-Eclampsia ; blood ; metabolism ; Pregnancy ; Salvia miltiorrhiza ; chemistry ; Serum ; chemistry ; Umbilical Veins ; cytology
9.Protective effect of different solvent extracts from platycladi cacumen carbonisatum on LPS-induced human umbilical vein endothelial cells damage.
Li-Na ZHOU ; Wei-Feng YAO ; Jia LIU ; Jing SHANG ; Ming-Qiu SHAN ; Li ZHANG ; An-Wei DING
China Journal of Chinese Materia Medica 2013;38(22):3933-3938
OBJECTIVETo study the protective effect of different solvent extracts from Platycladi Cacumen Carbonisatum (PCC) on LPS-induced human umbilical vein endothelial cell damage, and discuss the effective extracts from PCC for protecting vascular endothelial cells and their possible active substances.
METHODHUVECs were cultured in vitro; And LPS was adopted to establish the human umbilical vein endothelial cell damage model. MTT colorimetric method was used to determine cell activity; Xanthine oxidase method was adopted to detect the activity of superoxide dismutases (SOD) in the cell culture fluid; The TBA method was adopted to determine the content of malondialdehyde (MDA); The nitrate reductase method was used to detect the content of nitric oxide (NO); And UPLC/Q-TOF-MS was used to analyze the difference in flavonoids components among different solvent extracts from PCC.
RESULTCompared with the model group, N-butanol extract (100 mg x L(-1)) and ethylacetate extract (100, 50 mg x L(-1)) could significantly enhance the cell activity (P < 0.05), significantly reduce MDA and NO content, and increase SOD activity (P < 0.05). Among the four solvent extracts, the content of total flavonids were the highest in ethyl acetate extract, the lowest in water extract and equivalent in N-butanol and petroleum benzene extract. In terms of the contents of quercitrin and myricitrin, N-butanol extract were second only to ethyl acetate extract.
CONCLUSIONEthylacetate extract from PCC has a notable antagonistic effect in the damage induced by LPS to HUVECs, and thus is the most effective extract from PCC in protecting vascular endothelial cells. Quercitrin, myricitrin or multiple flavonoids that it contains may be their active substances for protecting vascular endothelial cells. Its mechanism may be related to the decrease in the production of NO and the inhibition of lipid peroxidation in cells.
Cupressus ; chemistry ; Endothelial Cells ; drug effects ; metabolism ; Humans ; Lipopolysaccharides ; adverse effects ; Malondialdehyde ; metabolism ; Nitric Oxide ; metabolism ; Plant Extracts ; isolation & purification ; pharmacology ; Protective Agents ; isolation & purification ; pharmacology ; Superoxide Dismutase ; metabolism ; Umbilical Veins ; cytology
10.Changes in human umbilical vein endothelial cells induced by endothelial nitric oxide synthase traffic inducer.
Xiao-yan XU ; Wen-juan PANG ; Zi-na WEN ; Wen-pei XIANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(2):272-276
		                        		
		                        			
		                        			This study investigated the changes in human umbilical vein endothelial cells (HUVECs) induced by overexpression of endothelial nitric oxide synthase traffic inducer (NOSTRIN) and its role in cellular injury. Recombinant NOSTRIN-expressing and empty vectors were transfected into cultured HUVECs, and factor VIII-related antigen was examined by using immunohistochemical analysis. Growth curves were generated for both transfected and untransfected cells and these indicated that the proliferative ability of cells overexpressing NOSTRIN was significantly decreased. The expression of NOSTRIN and eNOS proteins was detected by using Western blot analysis, endothelial NOS (eNOS) activity was assayed by using spectrophotometry, and NO2 (-)/NO3 (-) levels were measured using nitrate reductase. Immunohistochemical analysis demonstrated that all groups expressed NOSTRIN in the plasma membrane and cytoplasm, and Western blot analysis confirmed that NOSTRIN levels were significantly higher in cells transfected with the NOSTRIN plasmid (P<0.01). The activity of eNOS and the levels of NO2 (-)/NO3 (-) were significantly decreased in NOSTRIN overexpressing cells as compared with empty vector and untransfected cells (P<0.01 and P<0.01, respectively). Morphological and ultrastructural changes were observed under light and electron microscopy, and it was found that NOSTRIN-overexpressing cells were elongated with deformities of the karyotheca, injury to the plasma membrane, increased lipids in the cytoplasm, and shortened microvilli. This study showed that overexpression of NOSTRIN had a significant effect on eNOS activity in HUVECs and resulted in significant cellular damage.
		                        		
		                        		
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cell Survival
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Endothelial Cells
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Intracellular Signaling Peptides and Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Nitric Oxide
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Nitric Oxide Synthase Type III
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Umbilical Veins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Up-Regulation
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail