1.Association of Serine/Threonine Phosphoprotein Phosphatase 4C Expression With Prognosis of Gastric Cancer.
Zhi-Jun GENG ; Ju HUANG ; Qing-Qing LI ; Zhi-Xuan ZHOU ; Jing LI ; Xiao-Feng ZHANG ; Lian WANG ; Yue-Yue WANG ; Xue SONG ; Lu-Gen ZUO
Acta Academiae Medicinae Sinicae 2023;45(5):721-729
Objective To investigate the expression level of serine/threonine phosphoprotein phosphatase 4C(PPP4C)in gastric cancer,and analyze its relationship with prognosis and the underlying regulatory mechanism.Methods The clinical data of 104 gastric cancer patients admitted to the First Affiliated Hospital of Bengbu Medical College between January 2012 and August 2016 were collected.Immunohistochemical staining was employed to determine the expression levels of PPP4C and Ki-67 in the gastric cancer tissue.The gastric cancer cell lines BGC823 and HGC27 were cultured and transfected with the vector for PPP4C knockdown,the vector for PPP4C overexpression,and the lentiviral vector(control),respectively.The effects of PPP4C on the cell cycle and proliferation were analyzed and the possible regulatory mechanisms were explored.Results PPP4C was highly expressed in gastric cancer(P<0.001),and its expression promoted malignant progression of the tumor(all P<0.01).Univariate and Cox multivariate analysis clarified that high expression of PPP4C was an independent risk factor affecting the 5-year survival rate of gastric cancer patients(P=0.003).Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis suggested that PPP4C may be involved in the cell cycle.The correlation analysis showed that the expression of PPP4C was positively correlated with that of Ki-67 in gastric cancer(P<0.001).The up-regulation of PPP4C expression increased the proportion of tumor cells in the S phase,alleviated the G2/M phase arrest,and promoted the proliferation of gastric cancer cells and the expression of cyclin D1 and cyclin-dependent kinase 6(CDK6)(all P<0.05).The down-regulation of PPP4C decreased the proportion of gastric cancer cells in the S phase,promoted G2/M phase arrest,and inhibited cell proliferation and the expression of cyclin D1,CDK6,and p53(all P<0.05).p53 inhibitors promoted the proliferation of BGC823 and HGC27 cells in the PPP4C knockdown group(P<0.001,P<0.001),while p53 activators inhibited the proliferation of BGC823 and HGC27 cells in the PPP4C overexpression group(P<0.001,P=0.002).Conclusions PPP4C is highly expressed in gastric cancer and affects the prognosis of the patients.It may increase the proportion of gastric cancer cells in the S phase and alleviate the G2/M phase arrest by inhibiting p53 signaling,thereby promoting cell proliferation.
Humans
;
Stomach Neoplasms/genetics*
;
Cyclin D1/metabolism*
;
Tumor Suppressor Protein p53
;
Phosphoproteins/metabolism*
;
Ki-67 Antigen
;
Cell Line, Tumor
;
Prognosis
;
Cell Proliferation
;
Phosphoprotein Phosphatases/metabolism*
;
Threonine
;
Serine
2.Effects and mechanism of p53 gene deletion on energy metabolism during the pluripotent transformation of spermatogonial stem cells.
Hong-Yang LIU ; Rui WEI ; Xiao-Xiao LI ; Kang ZOU
Acta Physiologica Sinica 2023;75(1):17-26
Previous studies have shown that long-term spermatogonial stem cells (SSCs) have the potential to spontaneously transform into pluripotent stem cells, which is speculated to be related to the tumorigenesis of testicular germ cells, especially when p53 is deficient in SSCs which shows a significant increase in the spontaneous transformation efficiency. Energy metabolism has been proved to be strongly associated with the maintenance and acquisition of pluripotency. Recently, we compared the difference in chromatin accessibility and gene expression profiles between wild-type (p53+/+) and p53 deficient (p53-/-) mouse SSCs using the Assay for Targeting Accessible-Chromatin with high-throughput sequencing (ATAC-seq) and transcriptome sequencing (RNA-seq) techniques, and revealed that SMAD3 is a key transcription factor in the transformation of SSCs into pluripotent cells. In addition, we also observed significant changes in the expression levels of many genes related to energy metabolism after p53 deletion. To further reveal the role of p53 in the regulation of pluripotency and energy metabolism, this paper explored the effects and mechanism of p53 deletion on energy metabolism during the pluripotent transformation of SSCs. The results of ATAC-seq and RNA-seq from p53+/+ and p53-/- SSCs revealed that gene chromatin accessibility related to positive regulation of glycolysis and electron transfer and ATP synthesis was increased, and the transcription levels of genes encoding key glycolytic enzymes and regulating electron transport-related enzymes were markedly increased. Furthermore, transcription factors SMAD3 and SMAD4 promoted glycolysis and energy homeostasis by binding to the chromatin of the Prkag2 gene which encodes the AMPK subunit. These results suggest that p53 deficiency activates the key enzyme genes of glycolysis in SSCs and enhances the chromatin accessibility of genes associated with glycolysis activation to improve glycolysis activity and promote transformation to pluripotency. Moreover, SMAD3/SMAD4-mediated transcription of the Prkag2 gene ensures the energy demand of cells in the process of pluripotency transformation and maintains cell energy homeostasis by promoting AMPK activity. These results shed light on the importance of the crosstalk between energy metabolism and stem cell pluripotency transformation, which might be helpful for clinical research of gonadal tumors.
Animals
;
Mice
;
AMP-Activated Protein Kinases
;
Chromatin
;
Energy Metabolism
;
Gene Deletion
;
Stem Cells
;
Tumor Suppressor Protein p53/genetics*
;
Spermatogonia/cytology*
;
Male
3.Lung Squamous Cell Carcinoma with EML4-ALK Fusion and TP53 Co-mutation Treated with Ensartinib: A Case Report and Literature Review.
Donglai LV ; Chunwei XU ; Chong WANG ; Qiuju SANG
Chinese Journal of Lung Cancer 2023;26(1):78-82
Lung squamous cell carcinoma (LSCC) accounts for approximately 30% of non-small cell lung cancer (NSCLC) cases and is the second most common histological type of lung cancer. Anaplastic lymphoma kinase (ALK)-positive NSCLC accounts for only 2%-5% of all NSCLC cases, and is almost exclusively detected in patients with lung adenocarcinoma. Thus, ALK testing is not routinely performed in the LSCC population, and the efficacy of such treatment for ALK-rearranged LSCC remains unknown. Echinoderm microtubule associated protein like 4 (EML4)-ALK (V1) and TP53 co-mutations were identified by next generation sequencing (NGS) in this patient with advanced LSCC. On December 3, 2020, Ensatinib was taken orally and the efficacy was evaluated as partial response (PR). The progression-free survival (PFS) was 19 months. When the disease progressed, the medication was changed to Loratinib. To our knowledge, Enshatinib created the longest PFS of ALK-mutant LSCC patients treated with targeted therapy since literature review. Herein, we described one case treated by Enshatinib involving a patient with both EML4-ALK and TP53 positive LSCC, and the relevant literatures were reviewed for discussing the treatment of this rare disease.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/drug therapy*
;
Lung Neoplasms/pathology*
;
Anaplastic Lymphoma Kinase/metabolism*
;
Carcinoma, Squamous Cell/genetics*
;
Mutation
;
Cytoskeletal Proteins/genetics*
;
Lung/pathology*
;
Oncogene Proteins, Fusion/genetics*
;
Protein Kinase Inhibitors/therapeutic use*
;
Tumor Suppressor Protein p53/genetics*
4.Paired box 5 increases the chemosensitivity of esophageal squamous cell cancer cells by promoting p53 signaling activity.
Weiwei ZHANG ; Wenji YAN ; Niansong QIAN ; Quanli HAN ; Weitao ZHANG ; Guanghai DAI
Chinese Medical Journal 2022;135(5):606-618
BACKGROUND:
Gene promoter methylation is a major epigenetic change in cancers, which plays critical roles in carcinogenesis. As a crucial regulator in the early stages of B-cell differentiation and embryonic neurodevelopment, the paired box 5 (PAX5) gene is downregulated by methylation in several kinds of tumors and the role of this downregulation in esophageal squamous cell carcinoma (ESCC) pathogenesis remains unclear.
METHODS:
To elucidate the role of PAX5 in ESCC, eight ESCC cell lines, 51 primary ESCC tissue samples, and eight normal esophageal mucosa samples were studied and The Cancer Genome Atlas (TCGA) was queried. PAX5 expression was examined by reverse transcription-polymerase chain reaction and western blotting. Cell apoptosis, proliferation, and chemosensitivity were detected by flow cytometry, colony formation assays, and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assays in ESCC cell lines with PAX5 overexpression or silencing. Tumor xenograft models were established for in vivo verification.
RESULTS:
PAX5 methylation was found in 37.3% (19/51) of primary ESCC samples, which was significantly associated with age (P = 0.007) and tumor-node-metastasis stage (P = 0.014). TCGA data analysis indicated that PAX5 expression was inversely correlated with promoter region methylation (r = -0.189, P = 0.011 for cg00464519 and r = -0.228, P = 0.002 for cg02538199). Restoration of PAX5 expression suppressed cell proliferation, promoted apoptosis, and inhibited tumor growth of ESCC cell lines, which was verified in xenografted mice. Ectopic PAX5 expression significantly increased p53 reporter luciferase activity and increased p53 messenger RNA and protein levels. A direct interaction of PAX5 with the p53 promoter region was confirmed by chromatin immunoprecipitation assays. Re-expression of PAX5 sensitized ESCC cell lines KYSE150 and KYSE30 to fluorouracil and docetaxel. Silencing of PAX5 induced resistance of KYSE450 cells to these drugs.
CONCLUSIONS
As a tumor suppressor gene regulated by promoter region methylation in human ESCC, PAX5 inhibits proliferation, promotes apoptosis, and induces activation of p53 signaling. PAX5 may serve as a chemosensitive marker of ESCC.
Animals
;
Carcinoma, Squamous Cell/genetics*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Epithelial Cells/metabolism*
;
Esophageal Neoplasms/genetics*
;
Esophageal Squamous Cell Carcinoma/genetics*
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Mice
;
PAX5 Transcription Factor/genetics*
;
Tumor Suppressor Protein p53/genetics*
;
Xenograft Model Antitumor Assays
5.HBV-upregulated Lnc-HUR1 inhibits the apoptosis of liver cancer cells.
Yongchen CHEN ; Jinyan WEN ; Dandan QI ; Xiaomei TONG ; Ningning LIU ; Xin YE
Chinese Journal of Biotechnology 2022;38(9):3501-3514
Lnc-HUR1 is an HBV-related long non-coding RNA, which can promote the proliferation of hepatoma cells and the occurrence and development of liver cancer. In this study we explored the effect of lnc-HUR1 on the apoptosis of hepatocellular carcinoma cells by taking the approach of immunoblotting, quantitative real time PCR, luciferase reporter assay, chromatin immunoprecipitation (ChIP) and flow cytometry. We found that overexpression of lnc-HUR1 significantly reduced the activity of caspase3/7 and the cleavage of PARP-1, while knocking down of lnc-HUR1 significantly increased the activity of caspase3/7 and promoted the cleavage of PARP-1 in HepG2 cells treated with TGF-β, pentafluorouracil or staurosporine. Consistently, the data from Annexin-V/PI staining showed that overexpression of lnc-HUR1 inhibited apoptosis, while knockdown of lnc-HUR1 promoted apoptosis. Moreover, overexpression of lnc-HUR1 up-regulated the apoptosis inhibitor Bcl-2 and down-regulated the pro-apoptotic factor BAX at both RNA and protein levels. In the CCL4-induced acute liver injury mice model, the expression of Bcl-2 in the liver tissue of lnc-HUR1 transgenic mice was higher than that of the control mice. The data from ChIP assay indicated that lnc-HUR1 reduced the enrichment of p53 on Bcl-2 and BAX promoters. All these results indicated that lnc-HUR1 inhibited the apoptosis by promoting the expression of apoptosis inhibitor Bcl-2 and inhibiting the expression of apoptosis promoting factor BAX. Further studies showed that lnc-HUR1 regulated the transcription of Bcl-2 and BAX in HCT116 cells, but had no effect on the expression of Bcl-2 and BAX in HCT116 p53-/- cells, indicating that lnc-HUR1 regulates the transcription of Bcl-2 and BAX dependent upon the activity of p53. In conclusion, HBV upregulated lnc-HUR1 can inhibit the apoptosis of hepatoma cells. Lnc-HUR1 inhibits apoptosis by inhibiting the transcriptional activity of p53. These results suggest that lnc-HUR1 plays an important role in the occurrence and development of HBV-related hepatocellular carcinoma.
Animals
;
Annexins/pharmacology*
;
Apoptosis
;
Carcinoma, Hepatocellular/genetics*
;
Cell Proliferation
;
Hep G2 Cells
;
Hepatitis B virus/metabolism*
;
Humans
;
Liver Neoplasms/genetics*
;
Mice
;
Poly(ADP-ribose) Polymerase Inhibitors/pharmacology*
;
Proto-Oncogene Proteins c-bcl-2/pharmacology*
;
RNA, Long Noncoding/metabolism*
;
Staurosporine/pharmacology*
;
Transforming Growth Factor beta/pharmacology*
;
Tumor Suppressor Protein p53/pharmacology*
;
bcl-2-Associated X Protein/pharmacology*
6.Effect of miRNA-200b on the proliferation of liver cancer cells via targeting SMYD2/p53 signaling pathway.
Weijin FANG ; Liying SONG ; Zuojun LI ; Peipei MENG ; Shanru ZUO ; Shikun LIU
Journal of Central South University(Medical Sciences) 2022;47(10):1303-1314
OBJECTIVES:
Our previous study has verified that high level of SET and MYND domain-containing protein 2 (SMYD2) plays an important role in acquiring aggressive ability for liver cancer cells in hepatocellular carcinoma. MiR-200b as a tumor suppressor gene involves in a variety of cancers. This study aims to investigate the correlation between miR-200b and SMYD2 in hepatocellular carcinoma and the underlying mechanism.
METHODS:
Firstly, the levels of SMYD2 and miR-200b in hepatocellular carcinoma tissues and matched adjacent non-tumor liver tissues were tested with real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. Secondly, we evaluated the interaction between miR-200b and SMYD2 using dual-luciferase reporter assay. Thirdly, we elucidated the effect of miR-200b on SMYD2 and its downstream targets p53/CyclinE1. Finally, we silenced SMYD2 in hepatocellular carcinoma cell lines to investigate its effect on tumor proliferation and cell cycle progression, and further confirmed the correlation among SMYD2 and p53/CyclinE1.
RESULTS:
Compared with the matched adjacent non-tumor liver tissues, miR-200b was obviously decreased, and SMYD2 was significantly increased in hepatocellular carcinoma (both P<0.05). Spearman's rank correlation revealed that miR-200b expression was negatively correlated with SMYD2 (P<0.01). Computer algorithm and dual-luciferase reporter assay revealed that miR-200b directly targeted and suppressed SMYD2 in HEK 293T cells. The down-regulated miR-200b expression promoted hepatoma cell proliferation (P<0.05) and increased SMYD2 expression(P<0.01), while the up-regulated expression of miR-200b had an opposite effect. The knockdown of SMYD2 suppressed the proliferation of MHCC-97L cells (P<0.01), down-regulated CyclinE1, and up-regulated p53 expression (both P<0.05).
CONCLUSIONS
MiR-200b is involved in hepatocellular carcinoma progression via targeting SMYD2 and regulating SMYD2/p53/CyclinE1 signaling pathway and may be used as a potential target for hepatocellular carcinoma treatment.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Tumor Suppressor Protein p53/metabolism*
;
MicroRNAs/metabolism*
;
Cell Line, Tumor
;
Signal Transduction
;
Liver Neoplasms/pathology*
;
Cell Proliferation/genetics*
;
Histone-Lysine N-Methyltransferase/metabolism*
7.Macrophage migration inhibitory factor protects bone marrow mesenchymal stem cells from hypoxia/ischemia-induced apoptosis by regulating lncRNA MEG3.
Zhibiao BAI ; Kai HU ; Jiahuan YU ; Yizhe SHEN ; Chun CHEN
Journal of Zhejiang University. Science. B 2022;23(12):989-1001
OBJECTIVES:
This research was performed to explore the effect of macrophage migration inhibitory factor (MIF) on the apoptosis of bone marrow mesenchymal stem cells (BMSCs) in ischemia and hypoxia environments.
METHODS:
The cell viability of BMSCs incubated under hypoxia/ischemia (H/I) conditions with or without pretreatment with MIF or triglycidyl isocyanurate (TGIC) was detected using cell counting kit-8 (CCK-8) analysis. Plasmids containing long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) or β-catenin small interfering RNA (siRNA) were used to overexpress or downregulate the corresponding gene, and the p53 signaling pathway was activated by pretreatment with TGIC. The influences of MIF, overexpression of lncRNA MEG3, activation of the p53 signaling pathway, and silencing of β-catenin on H/I-induced apoptosis of BMSCs were revealed by western blotting, flow cytometry, and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining.
RESULTS:
From the results of CCK-8 assay, western blotting, and flow cytometry, pretreatment with MIF significantly decreased the H/I-induced apoptosis of BMSCs. This effect was inhibited when lncRNA MEG3 was overexpressed by plasmids containing MEG3. The p53 signaling pathway was activated by TGIC, and β-catenin was silenced by siRNA. From western blot results, the expression levels of β-catenin in the nucleus and phosphorylated p53 (p-p53) were downregulated and upregulated, respectively, when the lncRNA MEG3 was overexpressed. Through flow cytometry, MIF was also shown to significantly alleviate the increased reactive oxygen species (ROS) level of BMSCs caused by H/I.
CONCLUSIONS
In summary, we conclude that MIF protected BMSCs from H/I-induced apoptosis by downregulating the lncRNA MEG3/p53 signaling pathway, activating the Wnt/β-catenin signaling pathway, and decreasing ROS levels.
Humans
;
RNA, Long Noncoding/metabolism*
;
Macrophage Migration-Inhibitory Factors/metabolism*
;
beta Catenin/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Sincalide/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
;
Apoptosis
;
Mesenchymal Stem Cells
;
Wnt Signaling Pathway/genetics*
;
RNA, Small Interfering/metabolism*
;
Hypoxia/metabolism*
;
Ischemia
;
Bone Marrow Cells
8.Molecular classification and clinicopathological features of endometrial carcinoma.
Chinese Journal of Pathology 2022;51(10):993-999
Objective: To investigate the molecular classification and clinicopathological features of endometrial carcinoma(EC). Methods: One hundred cases of EC diagnosed in the Department of Pathology, Tianjin Central Hospital of Gynecology and Obstetrics from November 2020 to November 2021 were selected. Sanger sequencing and immunohistochemical staining were used for molecular classification according to the 5th WHO classification. The clinicopathological characteristics of each molecular subtype was analyzed. Results: The 100 EC patients had a mean age of 53 years (range 26 to 72 years). There were 10 cases of POLE mutation (POLE mut), including two cases (2/10) of "binary-classifier" EC, two cases (2/10) of FIGO Grade 3 endometrioid endometrial carcinoma (G3-EEC), and three cases (3/10) of other high-grade subtypes. There were 38 cases of mismatch repair deficiency (dMMR), including one case (1/38, 2.6%) of "binary-classifier" EC and 36 cases (36/38, 94.7%) were EEC. Twenty-one cases (21/38, 55.3%) showed simultaneous loss of expression of MLH1 and PMS2, and 20 cases (20/21, 95.2%) were positive for MLH1 methylation, indicating that they were sporadic EC. Six patients (6/38, 15.8%) were tested for germline detection of Lynch syndrome (LS) related genes, and one patient was LS-related EC. There were 44 cases of non-specific molecular profile (NSMP), including 34 cases (34/44, 77.3%) of G1-2 EEC and seven cases (7/44, 15.9%) of G3-EEC. There were eight cases of p53 abnormality (p53 abn), including four cases (4/8) of G3-EEC, two cases (2/8) of other high-grade subtypes, and one patient had hereditary breast cancer and ovarian cancer syndrome. Conclusions: Correct interpretation of POLE mutation, MMR and p53 immunohistochemistry is the key of molecular classification. The interpretation must strictly follow standard diagnostic procedures and specifications to ensure the accuracy of molecular classification.
Adult
;
Aged
;
Carcinoma, Endometrioid/genetics*
;
Colorectal Neoplasms, Hereditary Nonpolyposis/pathology*
;
DNA Mismatch Repair
;
Endometrial Neoplasms/pathology*
;
Female
;
Humans
;
Middle Aged
;
Mismatch Repair Endonuclease PMS2/metabolism*
;
MutL Protein Homolog 1/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
9.RNF126 Quenches RNF168 Function in the DNA Damage Response.
Lianzhong ZHANG ; Zhenzhen WANG ; Ruifeng SHI ; Xuefei ZHU ; Jiahui ZHOU ; Bin PENG ; Xingzhi XU
Genomics, Proteomics & Bioinformatics 2018;16(6):428-438
DNA damage response (DDR) is essential for maintaining genome stability and protecting cells from tumorigenesis. Ubiquitin and ubiquitin-like modifications play an important role in DDR, from signaling DNA damage to mediating DNA repair. In this report, we found that the E3 ligase ring finger protein 126 (RNF126) was recruited to UV laser micro-irradiation-induced stripes in a RNF8-dependent manner. RNF126 directly interacted with and ubiquitinated another E3 ligase, RNF168. Overexpression of wild type RNF126, but not catalytically-inactive mutant RNF126 (CC229/232AA), diminished ubiquitination of H2A histone family member X (H2AX), and subsequent bleomycin-induced focus formation of total ubiquitin FK2, TP53-binding protein 1 (53BP1), and receptor-associated protein 80 (RAP80). Interestingly, both RNF126 overexpression and RNF126 downregulation compromised homologous recombination (HR)-mediated repair of DNA double-strand breaks (DSBs). Taken together, our findings demonstrate that RNF126 negatively regulates RNF168 function in DDR and its appropriate cellular expression levels are essential for HR-mediated DSB repair.
Carrier Proteins
;
metabolism
;
Cell Line, Tumor
;
DNA Breaks, Double-Stranded
;
DNA Repair
;
genetics
;
DNA-Binding Proteins
;
metabolism
;
Genomic Instability
;
HeLa Cells
;
Histones
;
metabolism
;
Humans
;
Nuclear Proteins
;
metabolism
;
RNA Interference
;
RNA, Small Interfering
;
genetics
;
Signal Transduction
;
Tumor Suppressor p53-Binding Protein 1
;
metabolism
;
Ubiquitin
;
Ubiquitin-Protein Ligases
;
genetics
;
metabolism
;
Ubiquitination
10.TSNAdb: A Database for Tumor-specific Neoantigens from Immunogenomics Data Analysis.
Jingcheng WU ; Wenyi ZHAO ; Binbin ZHOU ; Zhixi SU ; Xun GU ; Zhan ZHOU ; Shuqing CHEN
Genomics, Proteomics & Bioinformatics 2018;16(4):276-282
Tumor-specific neoantigens have attracted much attention since they can be used as biomarkers to predict therapeutic effects of immune checkpoint blockade therapy and as potential targets for cancer immunotherapy. In this study, we developed a comprehensive tumor-specific neoantigen database (TSNAdb v1.0), based on pan-cancer immunogenomic analyses of somatic mutation data and human leukocyte antigen (HLA) allele information for 16 tumor types with 7748 tumor samples from The Cancer Genome Atlas (TCGA) and The Cancer Immunome Atlas (TCIA). We predicted binding affinities between mutant/wild-type peptides and HLA class I molecules by NetMHCpan v2.8/v4.0, and presented detailed information of 3,707,562/1,146,961 potential neoantigens generated by somatic mutations of all tumor samples. Moreover, we employed recurrent mutations in combination with highly frequent HLA alleles to predict potential shared neoantigens across tumor patients, which would facilitate the discovery of putative targets for neoantigen-based cancer immunotherapy. TSNAdb is freely available at http://biopharm.zju.edu.cn/tsnadb.
Antigens, Neoplasm
;
metabolism
;
Data Analysis
;
Databases, Genetic
;
Humans
;
Immunotherapy
;
Mutation
;
genetics
;
Neoplasms
;
genetics
;
immunology
;
Tumor Suppressor Protein p53
;
genetics
;
Urinary Bladder Neoplasms
;
genetics

Result Analysis
Print
Save
E-mail