1.MAGED4B Promotes Glioma Progression via Inactivation of the TNF-α-induced Apoptotic Pathway by Down-regulating TRIM27 Expression.
Can LIU ; Jun LIU ; Juntang SHAO ; Cheng HUANG ; Xingliang DAI ; Yujun SHEN ; Weishu HOU ; Yuxian SHEN ; Yongqiang YU
Neuroscience Bulletin 2023;39(2):273-291
		                        		
		                        			
		                        			MAGED4B belongs to the melanoma-associated antigen family; originally found in melanoma, it is expressed in various types of cancer, and is especially enriched in glioblastoma. However, the functional role and molecular mechanisms of MAGED4B in glioma are still unclear. In this study, we found that the MAGED4B level was higher in glioma tissue than that in non-cancer tissue, and the level was positively correlated with glioma grade, tumor diameter, Ki-67 level, and patient age. The patients with higher levels had a worse prognosis than those with lower MAGED4B levels. In glioma cells, MAGED4B overexpression promoted proliferation, invasion, and migration, as well as decreasing apoptosis and the chemosensitivity to cisplatin and temozolomide. On the contrary, MAGED4B knockdown in glioma cells inhibited proliferation, invasion, and migration, as well as increasing apoptosis and the chemosensitivity to cisplatin and temozolomide. MAGED4B knockdown also inhibited the growth of gliomas implanted into the rat brain. The interaction between MAGED4B and tripartite motif-containing 27 (TRIM27) in glioma cells was detected by co-immunoprecipitation assay, which showed that MAGED4B was co-localized with TRIM27. In addition, MAGED4B overexpression down-regulated the TRIM27 protein level, and this was blocked by carbobenzoxyl-L-leucyl-L-leucyl-L-leucine (MG132), an inhibitor of the proteasome. On the contrary, MAGED4B knockdown up-regulated the TRIM27 level. Furthermore, MAGED4B overexpression increased TRIM27 ubiquitination in the presence of MG132. Accordingly, MAGED4B down-regulated the protein levels of genes downstream of ubiquitin-specific protease 7 (USP7) involved in the tumor necrosis factor-alpha (TNF-α)-induced apoptotic pathway. These findings indicate that MAGED4B promotes glioma growth via a TRIM27/USP7/receptor-interacting serine/threonine-protein kinase 1 (RIP1)-dependent TNF-α-induced apoptotic pathway, which suggests that MAGED4B is a potential target for glioma diagnosis and treatment.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			DNA-Binding Proteins/metabolism*
		                        			;
		                        		
		                        			Ubiquitin-Specific Peptidase 7
		                        			;
		                        		
		                        			Cisplatin
		                        			;
		                        		
		                        			Temozolomide
		                        			;
		                        		
		                        			Transcription Factors
		                        			;
		                        		
		                        			Glioma
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Melanoma
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Nuclear Proteins/genetics*
		                        			
		                        		
		                        	
2.Role of brain and muscle ARNT-like protein 1 in the rat periodontitis-induced liver injury model.
Xiao Meng LIU ; Niu Ben CAO ; Yu DENG ; Yu Bo HOU ; Xin Chan LIU ; Hao Nan MA ; Wei Xian YU
Chinese Journal of Stomatology 2022;57(10):1048-1056
		                        		
		                        			
		                        			Objective: Brain and muscle ARNT-like protein 1 (BMAL1) is a core component of hepatocyte molecular clock and plays an important role in the regulation of other related rhythmic genes in the body through a transcriptional-translational feedback loop in molecular circadian oscillations. Therefore, the aim of this study was to investigate the role of BMAL1 in the rat periodontitis-induced liver injury. Methods: Twelve male Wistar rats were divided into the control group and the periodontitis group according to the random number table method. The rats in the control group were untreated. The periodontitis models were established by ligating the necks of the bilateral maxillary first molars in the periodontitis group rats. After 8 weeks, periodontal clinical indexes of rats in both groups were examined and executed. Micro-CT scans of the maxilla were performed and levels of the alveolar bone resorption were analyzed. Pathological changes in periodontal and liver tissue of rats in two groups were detected by HE and oil red O staining. Biochemical kits were used to detect glutamic-oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT), total cholesterol (TC) and triglycerides (TG) in serum. The gene and protein expression levels of BMAL1, nuclear factor kappa-B (NF-κB) and tumor necrosis factor-α (TNF-α) in liver tissue were measured by real time fluorescent quantitative-PCR (qRT-PCR), immunohistochemistry (IHC) and Western blotting (WB) assays. Apoptosis was detected in liver tissues by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) kit staining. Results: The results of HE staining of maxillary first molars and micro-CT results of maxillary bones showed that alveolar bone resorption was significant in the periodontitis group of rats. The liver histopathology results showed infiltrated inflammatory cells in the liver tissue, disorganized liver cords and a large number of lipid droplets formed in the hepatocytes of the periodontitis group compared with the control group. The results of serum biochemical assay showed that the levels of GOT [(62.77±2.59) U/L], GPT [(47.54±1.04) U/L], TC [(3.19±0.23) mmol/L] and TG [(1.11±0.09) mmol/L] in the serum of rats with periodontitis were significantly higher than that in the control group respectively [GOT: (38.66±2.47) U/L, GPT: (31.48±1.57) U/L, TC: (1.60±0.05) mmol/L and TG: (0.61±0.09) mmol/L](P=0.003, P=0.001, P=0.002, P=0.038). qRT-PCR results showed that the mRNA expression level of BMAL1 was significantly decreased in liver tissue of the periodontitis group [(0.60±0.04)%] compared to the control group [(1.01±0.07)%] (t=4.80, P=0.009), while the mRNA expression levels of NF-κB and TNF-α [(1.62±0.12)%, (2.69±0.16)%] were significantly increased compared to the control group [(1.00±0.03)%, (1.03±0.16)%] (P=0.008, P=0.002); IHC results showed that the protein expression level of BMAL1 in liver tissue of the periodontitis group (averaged optical density, AOD) (11.58±2.15) was down-regulated compared to the control group (AOD) (22.66±1.67) (P=0.015), while NF-κB and TNF-α (AOD) (31.77±2.69, 24.31±2.32) were up-regulated compared to the control group (AOD) (19.40±1.82, 11.92±0.94) (P=0.019, P=0.008). WB results showed that the protein expression level of BMAL1 in liver tissue was down-regulated in the periodontitis group [(0.63±0.10)%] compared to the control group [(1.00±0.06)%] (t=3.19, P=0.033), while NF-κB and TNF-α [(1.61±0.12)%, (2.82±0.23)%] were up-regulated compared to the control group [(1.00±0.12)%, (1.00±0.11)%] (P=0.022, P=0.002). TUNEL staining showed increased apoptotic cells in the liver tissue of the periodontitis group of rats compared to the control group. Conclusions: Periodontitis may induce liver injury by down-regulating the BMAL1 expression levels in liver tissue, which in turn activates NF-κB signaling molecules, leading to the elevated levels of inflammation and apoptosis in rat liver.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Alanine Transaminase/metabolism*
		                        			;
		                        		
		                        			ARNTL Transcription Factors/metabolism*
		                        			;
		                        		
		                        			Aspartate Aminotransferases/metabolism*
		                        			;
		                        		
		                        			Biotin/metabolism*
		                        			;
		                        		
		                        			Bone Resorption
		                        			;
		                        		
		                        			Brain
		                        			;
		                        		
		                        			Chemical and Drug Induced Liver Injury, Chronic
		                        			;
		                        		
		                        			Cholesterol
		                        			;
		                        		
		                        			DNA Nucleotidylexotransferase/metabolism*
		                        			;
		                        		
		                        			Muscles/metabolism*
		                        			;
		                        		
		                        			NF-kappa B/metabolism*
		                        			;
		                        		
		                        			Periodontitis
		                        			;
		                        		
		                        			Rats, Wistar
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			;
		                        		
		                        			Triglycerides
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			
		                        		
		                        	
3.Action Mechanism of Ethambutol Tablets on Pulmonary Tuberculosis Rat Model Based on Janus Kinase/Signal Transducer and Activator of Transcription Signaling Pathway.
Jian-Jun LI ; Su-Fang WU ; Feng-Xi BAI
Acta Academiae Medicinae Sinicae 2022;44(4):555-562
		                        		
		                        			
		                        			Objective To explore the therapeutic effect of ethambutol tablets (EMB) on pulmonary tuberculosis (PTB) in rats and whether the action mechanism of EMB is related to Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway. Methods Sixty SD rats were assigned into a control group,a PTB group,a PTB+EMB group (30 mg/kg),and a PTB+EMB+Colivelin (JAK/STAT pathway activator) group (30 mg/kg+1 mg/kg) via the random number table method,with 15 rats in each group.The rats in other groups except the control group were injected with 0.2 ml of 5 mg/ml Mycobacterium tuberculosis suspension to establish the PTB model.After the modeling,the rats were administrated with corresponding drugs for 4 consecutive weeks (once a day).On days 1,14,and 28 of administration,the body weights of rats were measured and the Mycobacterium tuberculosis colonies were counted.Hematoxylin-eosin staining was carried out to detect the pathological changes in the lung tissue.Enzyme-linked immunosorbent assay was employed to measure the levels of interleukin(IL)-6,tumor necrosis factor-α (TNF-α),IL-1β,and interferon-γ (IFN-γ) in the serum.Flow cytometry was used to determine the levels of T lymphocyte subsets CD3+,CD4+,CD8+,and CD4+/CD8+.The 16S rRNA sequencing was performed to detect the relative abundance of the intestinal microorganisms.Western blotting was employed to determine the expression of the proteins in the JAK/STAT pathway. Results Compared with the control group,the modeling of PTB reduced the rat body weight (on days 14 and 28),increased Mycobacterium tuberculosis colonies,caused severe pathological changes in the lung tissue,and elevated the levels of IL-6,TNF-α,and IL-1β in serum and CD8+.Moreover,the modeling increased the relative abundance of Bacteroides,Peptococcus,Clostridium,Actinomyces,Lactobacillus,Verrucomicrobium,and Veillonella in the intestine,up-regulated the protein levels of phosphorylated JAK2 and phosphorylated STAT3 in the lung tissue,and lowered the levels of CD3+,CD4+,CD4+/CD8+,and IFN-γ levels (all P<0.001).Compared with the PTB group,PTB+EMB increased the rat body weight (on days 14 and 28),reduced Mycobacterium tuberculosis colonies,alleviated the pathological damage in lung tissue,lowered the levels of IL-6,TNF-α,and IL-1β in serum and CD8+.Moreover,the treatment decreased the relative abundance of Bacteroides,Peptococcus,Clostridium,Actinomyces,Lactobacillus,Verrucomicrobium,Veillonella in the intestine,down-regulated the protein levels of phosphorylated JAK2 and phosphorylated STAT3 in the lung tissue,and elevated the levels of CD3+,CD4+,CD4+/CD8+,and IFN-γ (all P<0.001).Colivelin weakened the alleviation effect of EMB on PTB (all P<0.001). Conclusion EMB can inhibit the JAK/STAT signaling pathway to alleviate the PTB in rat.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Body Weight
		                        			;
		                        		
		                        			Ethambutol/pharmacology*
		                        			;
		                        		
		                        			Interferon-gamma/pharmacology*
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			Janus Kinases/pharmacology*
		                        			;
		                        		
		                        			Mycobacterium tuberculosis/metabolism*
		                        			;
		                        		
		                        			RNA, Ribosomal, 16S
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			STAT Transcription Factors/pharmacology*
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Tablets/pharmacology*
		                        			;
		                        		
		                        			Tuberculosis, Pulmonary/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			
		                        		
		                        	
4.Pathogenetic factors involved in recurrent pregnancy loss from multiple aspects
Chang Zhu PEI ; Young Ju KIM ; Kwang Hyun BAEK
Obstetrics & Gynecology Science 2019;62(4):212-223
		                        		
		                        			
		                        			Recurrent pregnancy loss (RPL) is a common complication in obstetrics, affecting about 5% of women of childbearing age. An increase in the number of abortions results in escalation in the risk of miscarriage. Although concentrated research has identified numerous causes for RPL, about 50% of them remain unexplained. Pregnancy is a complex process, comprising fertilization, implantation, organ and tissue differentiation, and fetal growth, which is effectively controlled by a number of both maternal and fetal factors. An example is the immune response, in which T cells and natural killer cells participate, and inflammation mediated by tumor necrosis factor or colony-stimulating factor, which hinders embryo implantation. Furthermore, vitamin D affects glucose metabolism and inhibits embryonic development, whereas microRNA has a negative effect on the gene expression of embryo implantation and development. This review examines the causes of RPL from multiple perspectives, and focuses on the numerous factors that may result in RPL.
		                        		
		                        		
		                        		
		                        			Abortion, Habitual
		                        			;
		                        		
		                        			Abortion, Spontaneous
		                        			;
		                        		
		                        			Colony-Stimulating Factors
		                        			;
		                        		
		                        			Embryo Implantation
		                        			;
		                        		
		                        			Embryonic Development
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Fertilization
		                        			;
		                        		
		                        			Fetal Development
		                        			;
		                        		
		                        			Gene Expression
		                        			;
		                        		
		                        			Glucose
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			Killer Cells, Natural
		                        			;
		                        		
		                        			Metabolism
		                        			;
		                        		
		                        			MicroRNAs
		                        			;
		                        		
		                        			Obstetrics
		                        			;
		                        		
		                        			Pregnancy
		                        			;
		                        		
		                        			Proteomics
		                        			;
		                        		
		                        			T-Lymphocytes
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			Vitamin D
		                        			
		                        		
		                        	
5.Efficacy and safety of metformin for Behcet's disease and its effect on Treg/Th17 balance: a single-blinded, before-after study.
Chen YONG ; Luo DAN ; Lin CHENHONG ; Shen YAN ; Cai JIANFEI ; Guan JIANLONG
Journal of Southern Medical University 2019;39(2):127-133
		                        		
		                        			OBJECTIVE:
		                        			Behcet's disease (BD) is an autoimmune disorder that causes most commonly mouth and genital ulcerations and erythema nodules of the skin and currently has limited options of therapeutic medicines. Metformin is recently reported to suppress immune reaction, and we hypothesized that metformin could be an option for treatment of BD.
		                        		
		                        			METHODS:
		                        			Thirty patients with BD were enrolled in this perspective single-blinded, before-after study. We recorded the changes in the mucocutaneous activity index for BD (MAIBD), relapse frequency, C-reactive protein (CRP) level and erythrocyte sedimentation rate (ESR) after metformin treatment to assess the changes in the disease activity. We also analyzed the changes in the protein and mRNA expression levels of Foxp3, interleukin-35 (IL-35), transforming growth factor-β (TGF-β), Ror-γt, IL-17, and tumor necrosis factor- (TNF-) in these patients using ELISA and qRT-PCR.
		                        		
		                        			RESULTS:
		                        			Of the 30 patients enrolled, 26 completed the trial. After the treatment, favorable responses were achieved in 88.46% (23/26) of the patients, and partial remission was obtained in 11.54% (4/26) of them. During the treatment, 8 patients complained of gastrointestinal side effects, for which 4 chose to withdraw from the study in the first week. Our results showed that metformin treatment decreased MAIBD and relapse frequency in the patients, and significantly lowered the clinical inflammatory indexes including CRP and ESR. The results of ELISA and qRT-PCR revealed that metformin treatment obviously increased Foxp3 and TGF-β expressions at both the protein and mRNA levels and significantly decreased the levels of ROR-γt, IL-17 and TNF- as well as IL-35 level in these patients.
		                        		
		                        			CONCLUSIONS
		                        			Metformin treatment relieves the clinical symptoms, reduces the inflammatory reaction indexes and regulates the Treg/Th17 axis in patients with BD, suggesting the potential of metformin as a candidate medicine for treatment of BD.
		                        		
		                        		
		                        		
		                        			Behcet Syndrome
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Controlled Before-After Studies
		                        			;
		                        		
		                        			Forkhead Transcription Factors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immunosuppressive Agents
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Interleukin-17
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Interleukins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Metformin
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Neoplasm Recurrence, Local
		                        			;
		                        		
		                        			Nuclear Receptor Subfamily 1, Group F, Member 3
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Recurrence
		                        			;
		                        		
		                        			Single-Blind Method
		                        			;
		                        		
		                        			T-Lymphocytes, Regulatory
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Th17 Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Transforming Growth Factor beta
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
6.TNF-α/TNFR1 Signaling is Required for the Full Expression of Acute and Chronic Itch in Mice via Peripheral and Central Mechanisms.
Xiuhua MIAO ; Ya HUANG ; Teng-Teng LIU ; Ran GUO ; Bing WANG ; Xue-Long WANG ; Li-Hua CHEN ; Yan ZHOU ; Ru-Rong JI ; Tong LIU
Neuroscience Bulletin 2018;34(1):42-53
		                        		
		                        			
		                        			Increasing evidence suggests that cytokines and chemokines play crucial roles in chronic itch. In the present study, we evaluated the roles of tumor necrosis factor-alpha (TNF-α) and its receptors TNF receptor subtype-1 (TNFR1) and TNFR2 in acute and chronic itch in mice. Compared to wild-type (WT) mice, TNFR1-knockout (TNFR1-KO) and TNFR1/R2 double-KO (DKO), but not TNFR2-KO mice, exhibited reduced acute itch induced by compound 48/80 and chloroquine (CQ). Application of the TNF-synthesis inhibitor thalidomide and the TNF-α antagonist etanercept dose-dependently suppressed acute itch. Intradermal injection of TNF-α was not sufficient to evoke scratching, but potentiated itch induced by compound 48/80, but not CQ. In addition, compound 48/80 induced TNF-α mRNA expression in the skin, while CQ induced its expression in the dorsal root ganglia (DRG) and spinal cord. Furthermore, chronic itch induced by dry skin was reduced by administration of thalidomide and etanercept and in TNFR1/R2 DKO mice. Dry skin induced TNF-α expression in the skin, DRG, and spinal cord and TNFR1 expression only in the spinal cord. Thus, our findings suggest that TNF-α/TNFR1 signaling is required for the full expression of acute and chronic itch via peripheral and central mechanisms, and targeting TNFR1 may be beneficial for chronic itch treatment.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Chloroquine
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Dose-Response Relationship, Drug
		                        			;
		                        		
		                        			Etanercept
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Ganglia, Spinal
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Mice, Transgenic
		                        			;
		                        		
		                        			Pruritus
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Receptors, Tumor Necrosis Factor, Type I
		                        			;
		                        		
		                        			deficiency
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Receptors, Tumor Necrosis Factor, Type II
		                        			;
		                        		
		                        			deficiency
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Skin
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Spinal Cord
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Thalidomide
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Time Factors
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			p-Methoxy-N-methylphenethylamine
		                        			;
		                        		
		                        			toxicity
		                        			
		                        		
		                        	
7.Swimming plus medication reduces the expressions of cytokines in rats with chronic abacterial prostatitis.
Hai-Bo SUN ; Min WANG ; Yuan-Zhong LIU ; Rong-Min DANG ; Hong-Shu XIE ; Zhang-Chun LI
National Journal of Andrology 2017;23(1):21-26
		                        		
		                        			Objective:
		                        			To observe the effects of swimming plus medication on the expressions of cytokines in rats with chronic abacterial prostatitis (CAP).
		                        		
		                        			METHODS:
		                        			Forty healthy adult male SD rats were randomly divided into five groups of equal number, normal control, CAP model control, medication, exercise therapy, and exercise + medication. The CAP model was made by Xiaozhiling injection, and at 7 days after modeling, the rats in the medication and exercise + medication groups were treated intragastrically with Qianlie Shutong Capsules (0.016 g/ml) at 20 ml per kg of the body weight qd, those in the exercise therapy and exercise + medication groups were made swim at a regular time once a day, 35 minutes on the first day and 5 minutes more on the second until 50 minutes once, for 4 successive weeks, and those in the normal control, model control and exercise therapy groups received normal saline only. After 14 and 28 days of treatment, all the rats were killed and their prostates harvested for observation of histopathological changes and determination of the expressions of TNF- α, IL-1β and IL-6 in the prostatic tissue homogenate by ELISA.
		                        		
		                        			RESULTS:
		                        			After 14 days of treatment, the expression levels of TNF-α, IL-1β and IL-6 were significantly elevated in the groups of CAP model control ([183.08±8.07] pg/ml, [57.55±3.53] pg/ml and [256.15±13.95] ng/L), medication ([118.49±8.06] pg/ml, [42.64±4.64 ] pg/ml and [200.74±9.33] ng/L), exercise therapy ([169.63±10.64] pg/ml, [50.45±5.71] pg/ml and [245.23±6.49] ng/L), and exercise + medication ([107.82±7.81] pg/ml, [40.35±6.93] pg/ml and [187.04±10.85] ng/L) as compared with those in the normal control ([20.36±1.82] pg/ml, [14.64±1.91] pg/ml and [70.58±2.09] ng/L) (P<0.05). At 28 days, the levels of TNF- α, IL-1β, IL-6 were remarkably lower in the exercise + medication group ([29.30±3.78] pg/ml, [16.91±1.24] pg/ml and [ 88.65±6.74] ng/L) than in the medication group ([39.67±3.19] pg/ml, [26.27±3.49] pg/ml and [110.26±6.33] ng/L) (P<0.05) and close to those of the normal control group ([19.34±1.76] pg/ml, [13.68±1.06] pg/ml and [71.34±2.50] ng/L). During the treatment, no obvious pathological changes were found in the prostate tissue of the normal control rats, while significant chronic prostatic inflammation was observed in the CAP models, and the inflammation was relieved in different degrees after intervention, most significantly in the exercise + medication group.
		                        		
		                        			CONCLUSIONS
		                        			Swimming can relieve prostatic inflammation and swimming plus medication can effectively reduce the expressions of cytokines and alleviate histological damage in the prostatic tissue of CAP rats.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Chronic Disease
		                        			;
		                        		
		                        			Combined Modality Therapy
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Cytokines
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Interleukin-1beta
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Physical Conditioning, Animal
		                        			;
		                        		
		                        			Prostatitis
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Random Allocation
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Swimming
		                        			;
		                        		
		                        			Time Factors
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
8.Crosstalk between FLS and chondrocytes is regulated by HIF-2alpha-mediated cytokines in arthritis.
Yun Hyun HUH ; Gyuseok LEE ; Won Hyun SONG ; Jeong Tae KOH ; Je Hwang RYU
Experimental & Molecular Medicine 2015;47(12):e197-
		                        		
		                        			
		                        			Rheumatoid arthritis (RA) and osteoarthritis (OA), two common types of arthritis, affect the joints mainly by targeting the synovium and cartilage. Increasing evidence indicates that a significant network connects synovitis and cartilage destruction during the progression of arthritis. We recently demonstrated that hypoxia-inducible factor (HIF)-2alpha causes RA and OA by regulating the expression of catabolic factors in fibroblast-like synoviocytes (FLS) or chondrocytes. To address the reciprocal influences of HIF-2alpha on FLS and chondrocytes, we applied an in vitro co-culture system using a transwell apparatus. When co-cultured with HIF-2alpha-overexpressing chondrocytes, FLS exhibited increased expression of matrix metalloproteinases and inflammatory mediators, similar to the effects induced by tumor-necrosis factor (TNF)-alpha treatment of FLS. Moreover, chondrocytes co-cultured with HIF-2alpha-overexpressing FLS exhibited upregulation of Mmp3 and Mmp13, which is similar to the effects induced by interleukin (IL)-6 treatment of chondrocytes. We confirmed these differential HIF-2alpha-induced effects via distinct secretory mediators using Il6-knockout cells and a TNF-alpha-blocking antibody. The FLS-co-culture-induced gene expression changes in chondrocytes were significantly abrogated by IL-6 deficiency, whereas TNF-alpha neutralization blocked the alterations in gene expression associated with co-culture of FLS with chondrocytes. Our results further suggested that the observed changes might reflect the HIF-2alpha-induced upregulation of specific receptors for TNF-alpha (in FLS) and IL-6 (in chondrocytes). This study broadens our understanding of the possible regulatory mechanisms underlying the crosstalk between the synovium and cartilage in the presence of HIF-2alpha, and may suggest potential new anti-arthritis therapies.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Arthritis/genetics/*immunology/pathology
		                        			;
		                        		
		                        			Arthritis, Rheumatoid/genetics/immunology/pathology
		                        			;
		                        		
		                        			Basic Helix-Loop-Helix Transcription Factors/genetics/*immunology
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Chondrocytes/immunology/metabolism/*pathology
		                        			;
		                        		
		                        			Coculture Techniques
		                        			;
		                        		
		                        			Fibroblasts/immunology/metabolism/*pathology
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			Interleukin-6/genetics/*immunology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Osteoarthritis/genetics/immunology/pathology
		                        			;
		                        		
		                        			Synovial Membrane/immunology/metabolism/*pathology
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/genetics/*immunology
		                        			;
		                        		
		                        			Up-Regulation
		                        			
		                        		
		                        	
9.Study of the change and role of protein C system in ulcerate colitis.
Xu-Hong LIN ; Hui-Chao WANG ; Dan-Dan WEI ; Bin WANG ; Quan-Xing GE ; Chun-Yang BAI ; Ya-Qiang WANG ; Xue-Qun REN
Acta Physiologica Sinica 2015;67(2):214-224
		                        		
		                        			
		                        			Hypercoagulable state and thrombosis are major lethal causes of ulcerate colitis (UC). The aim of the present study is to explore the change and role of protein C (PC) system in UC thrombosis. 4% dextran sulfate sodium (DSS) was used to induce the UC model, and the body weight, the length of colon, and the weight of spleen were measured after intake of DSS as drinking water for 1 week. The macroscore and microscore were examined. The quantity of macrophage in colon smooth muscle was observed by immunofluorescence, and TNF-α and IL-6 levels in plasma were evaluated by ELISA. Intravital microscopy was applied to observe colonic mucosal microvascular circulation, activities of PC and protein S (PS) were determined by immunoturbidimetry, endothelial cell protein C receptor (EPCR) and thrombomodulin (TM) expressions were detected by immunohistochemistry. In vitro, TNF-α and IL-6 levels were tested in supernatant of macrophage separated from colonic tissue. After stimulation of mouse colonic mucosa microvascular endothelial cells by TNF-α and IL-6 respectively, the activities of PC, PS, activated protein C (APC) were evaluated, and the expressions of EPCR and TM were detected by Western blotting. The results revealed that compared with control, the DSS mouse showed weight loss (P < 0.05), a shortened colon (P < 0.05), and swelled spleen (P < 0.05), accompanied by higher histological score (P < 0.05), as well as infiltration of macrophages, elevated TNF-α and IL-6 levels in plasma (P < 0.01). The intravital microscopy results revealed that compared with control, DSS mice showed significantly enhanced adhesion of leukocytes and colonic mucosal microvascular endothelial cells (P < 0.01), meanwhile, decreased activity of PC and PS in plasma (P < 0.01 or P < 0.05), and down-regulated expression of EPCR (P < 0.01). The degree of inflammation was negatively correlated with the PC activity. In vitro, TNF-α and IL-6 levels were increased in the supernatant of macrophages from DSS mice colonic tissue (P < 0.05), and after incubation of TNF-α or IL-6 with colonic mucosal microvascular endothelial cells, the APC activity was decreased (P < 0.05 or P < 0.01), and expression of EPCR was down regulated (P < 0.05). These results suggest that PC system is inhibited in UC mouse. Presumably, the mechanism may be due to the secretion of cytokines from macrophages and subsequential influence on the function of endothelia cells. Furthermore, enhancement of PC system activity may serve as a new strategy for the treatment of UC.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Blood Coagulation Factors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Colitis, Ulcerative
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Dextran Sulfate
		                        			;
		                        		
		                        			Immunohistochemistry
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			Intestinal Mucosa
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Protein C
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Receptors, Cell Surface
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Spleen
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			blood
		                        			
		                        		
		                        	
10.Preliminary study on substitution of Antelope Horn in Danqi Piantan capsule with artificial bezoar.
Jin-bo WANG ; Tao CHEN ; Zheng LI ; Yan-jun ZHANG ; Wei-li CUI ; Jin LI
China Journal of Chinese Materia Medica 2015;40(18):3616-3622
		                        		
		                        			
		                        			To study the protective effect of Danqi Piantan capsule ( DPC) and its antelope horn substitution (DPCAS) on the cerebral ischemia, in order to preliminary study the possibility of replacing antelope horn with artificial bezoar. In this study, the left middle cerebral artery occlusion (MCAO) was adopted. Totally 150 SD rats were randomly divided into 5 groups: the sham operation group, the model group, the Danqi Piantan capsule (DPC) group (0.246 g x kg(-1) x d(-1)), the Danqi Piantan capsule without antelope horn (DPCRA) group (0.246 g x kg(-1) x d(-1)), the Danqi Piantan capsule without antelope horn and with double artificial bezoar (DPCDB) group (0.246 g x kg(-1) x d(-1)). The MCAO model was prepared 1 h later after the administration on the 5th day. At 24 h after the operation, the inner canthus blood was collected to determine the serum superoxide dismutase (SOD) activity and the endothelin (ET) content. At 72 h after the operation, the cerebral infarct size and the cerebral index were determined by TTC-staining. The fluorescent quantitative PCR method was used to detect brain Bcl-2, Caspase-3, IL-1β, P-selectin, E-selectin, ICAM-1 mRNA expressions. The mmunohistochemical method was used to detect ICAM-1, IL-1β, TNF-α, IL-6 expressions in ischemic penumbra. According to the results, compared with the model group, DPCDB and DPC groups showed almost consistent results, indicating both of the two group can significantly improved cerebral infarction index and cerebral index (P < 0.05), increase the serum SOD activity (P < 0.05), decrease the serum ET level and Caspase-3 expression, IL-1β, P-selectin, E-selectin, ICAM-1 mRNA expressions in brain tissues (P < 0.05) and expressions of ICAM-1, IL-1,6, TNF-α, IL-6 positive cells in ischemic penumbra (P < 0.05) and increase the Bcl-2 expression (P < 0.05). The DPCRA group showed much lower impacts on indexes than DPCDB and DPC groups. This suggests that DPCDB and DPC reveal similar efficacies and antelope horn in Danqi Piantan capsule can be substitutes by artificial bezoar.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antelopes
		                        			;
		                        		
		                        			Bile
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Biological Factors
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			chemical synthesis
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Brain
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Caspase 3
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Drug Compounding
		                        			;
		                        		
		                        			Horns
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Infarction, Middle Cerebral Artery
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Intercellular Adhesion Molecule-1
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Interleukin-1beta
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Medicine, Chinese Traditional
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Superoxide Dismutase
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail