1.¹²³I-Labeled oxLDL Is Widely Distributed Throughout the Whole Body in Mice
Atushi NAKANO ; Hidekazu KAWASHIMA ; Yoshinori MIYAKE ; Tsutomu ZENIYA ; Akihide YAMAMOTO ; Kazuhiro KOSHINO ; Takashi TEMMA ; Tetsuya FUKUDA ; Yoshiko FUJITA ; Akemi KAKINO ; Shigehiko KANAYA ; Tatsuya SAWAMURA ; Hidehiro IIDA
Nuclear Medicine and Molecular Imaging 2018;52(2):144-153
		                        		
		                        			
		                        			PURPOSE: Oxidized low-density lipoprotein (oxLDL) plays a key role in endothelial dysfunction, vascular inflammation, and atherogenesis. The aim of this study was to assess blood clearance and in vivo kinetics of radiolabeled oxLDL in mice.METHODS: We synthesized ¹²³I-oxLDL by the iodine monochloride method, and performed an uptake study in CHO cells transfected with lectin-like oxLDL receptor-1 (LOX-1). In addition, we evaluated the consistency between the ¹²³I-oxLDL autoradiogram and the fluorescence image of DiI-oxLDL after intravenous injection for both spleen and liver. Whole-body dynamic planar images were acquired 10 min post injection of ¹²³I-oxLDL to generate regional time-activity curves (TACs) of the liver, heart, lungs, kidney, head, and abdomen. Regional radioactivity for those excised tissues as well as the bladder, stomach, gut, and thyroid were assessed using a gamma counter, yielding percent injected dose (%ID) and dose uptake ratio (DUR). The presence of ¹²³I-oxLDL in serum was assessed by radio-HPLC.RESULTS: The cellular uptakes of ¹²³I-oxLDL were identical to those of DiI-oxLDL, and autoradiograms and fluorescence images also exhibited consistent distributions. TACs after injection of ¹²³I-oxLDL demonstrated extremely fast kinetics. The radioactivity uptake at 10 min postinjection was highest in the liver (40.8 ± 2.4% ID). Notably, radioactivity uptake was equivalent throughout the rest of the body (39.4 ± 2.7% ID). HPLC analysis revealed no remaining ¹²³I-oxLDL or its metabolites in the blood.CONCLUSION: ¹²³I-OxLDL was widely distributed not only in the liver, but also throughout the whole body, providing insight into the pathophysiological effects of oxLDL.
		                        		
		                        		
		                        		
		                        			Abdomen
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Atherosclerosis
		                        			;
		                        		
		                        			CHO Cells
		                        			;
		                        		
		                        			Chromatography, High Pressure Liquid
		                        			;
		                        		
		                        			Cricetinae
		                        			;
		                        		
		                        			Fluorescence
		                        			;
		                        		
		                        			Head Kidney
		                        			;
		                        		
		                        			Heart
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			Injections, Intravenous
		                        			;
		                        		
		                        			Iodine
		                        			;
		                        		
		                        			Kinetics
		                        			;
		                        		
		                        			Lipoproteins
		                        			;
		                        		
		                        			Liver
		                        			;
		                        		
		                        			Lung
		                        			;
		                        		
		                        			Methods
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Radioactivity
		                        			;
		                        		
		                        			Spleen
		                        			;
		                        		
		                        			Stomach
		                        			;
		                        		
		                        			Thyroid Gland
		                        			;
		                        		
		                        			Urinary Bladder
		                        			
		                        		
		                        	
2.¹²³I-Labeled oxLDL Is Widely Distributed Throughout the Whole Body in Mice
Atushi NAKANO ; Hidekazu KAWASHIMA ; Yoshinori MIYAKE ; Tsutomu ZENIYA ; Akihide YAMAMOTO ; Kazuhiro KOSHINO ; Takashi TEMMA ; Tetsuya FUKUDA ; Yoshiko FUJITA ; Akemi KAKINO ; Shigehiko KANAYA ; Tatsuya SAWAMURA ; Hidehiro IIDA
Nuclear Medicine and Molecular Imaging 2018;52(2):144-153
		                        		
		                        			 PURPOSE:
		                        			Oxidized low-density lipoprotein (oxLDL) plays a key role in endothelial dysfunction, vascular inflammation, and atherogenesis. The aim of this study was to assess blood clearance and in vivo kinetics of radiolabeled oxLDL in mice.
		                        		
		                        			METHODS:
		                        			We synthesized ¹²³I-oxLDL by the iodine monochloride method, and performed an uptake study in CHO cells transfected with lectin-like oxLDL receptor-1 (LOX-1). In addition, we evaluated the consistency between the ¹²³I-oxLDL autoradiogram and the fluorescence image of DiI-oxLDL after intravenous injection for both spleen and liver. Whole-body dynamic planar images were acquired 10 min post injection of ¹²³I-oxLDL to generate regional time-activity curves (TACs) of the liver, heart, lungs, kidney, head, and abdomen. Regional radioactivity for those excised tissues as well as the bladder, stomach, gut, and thyroid were assessed using a gamma counter, yielding percent injected dose (%ID) and dose uptake ratio (DUR). The presence of ¹²³I-oxLDL in serum was assessed by radio-HPLC.
		                        		
		                        			RESULTS:
		                        			The cellular uptakes of ¹²³I-oxLDL were identical to those of DiI-oxLDL, and autoradiograms and fluorescence images also exhibited consistent distributions. TACs after injection of ¹²³I-oxLDL demonstrated extremely fast kinetics. The radioactivity uptake at 10 min postinjection was highest in the liver (40.8 ± 2.4% ID). Notably, radioactivity uptake was equivalent throughout the rest of the body (39.4 ± 2.7% ID). HPLC analysis revealed no remaining ¹²³I-oxLDL or its metabolites in the blood.
		                        		
		                        			CONCLUSION
		                        			¹²³I-OxLDL was widely distributed not only in the liver, but also throughout the whole body, providing insight into the pathophysiological effects of oxLDL. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail