1.Establishment and preliminary clinical application of human intestinal fluid transplantation.
Chen YE ; Qi Yi CHEN ; Yin Mei YAN ; Xiao Qiong LV ; Chun Lian MA ; Ning LI ; Huan Long QIN
Chinese Journal of Gastrointestinal Surgery 2022;25(9):819-825
Objective: To explore and establish the preparation system of human intestinal fluid transplantation (HIFT) and HIFT capsule, and to preliminarily apply it to clinic. Methods: Strict standards for donor screening and management were established. The nasojejunal tube was catheterized into the distal jejunum, and then it was connected with an improved disposable sterile negative pressure collection device for the collection of human intestinal fluid. After that, it was prepared into capsules by filtering, adding 10% glycerin protectant and freeze-drying method. The amount of living bacteria was used as the standard of therapeutic dose. The living bacteria amount in fluid is ≥ 5.0×108 /mL and the living bacteria proportion is ≥ 83%; the living bacteria amount in powder is ≥ 2.0×106 /g and the living bacteria proportion is ≥ 81%; The observational indicators included: (1) the basic information of the donor, the amount of living bacteria in the HIF and powder. (2) Preliminary analysis of the treatment for ASD, which combined HIFT capsule with standard FMT capsule, from February to December 2021 (Clinical trial Registration Number: ChiCTR2100043929). Evaluation criteria: Trypan blue staining method was used to detect the living bacteria amount in fluid and powder. The Autism Behavior Checklist (ABC) and Childhood Autism Rating Scale (CARS) were used to evaluate the efficacy. Results: Compared with the parent donor, the standard donor was younger [(25.4±0.9) y vs. (30.7±3.2) y, t=-19.097, P=0.001] and had a lower body mass index [(19.7±0.5) kg/m2 vs. (20.8±1.3) kg/m2, t=-8.726, P=0.001], more in the living bacteria amount in powder [(7.47±1.52)×106/g vs. (5.03±1.38)×106/g, t=11.331, P=0.031], Chao index (205.4±6.8 vs. 194.2±7.2, t=10.415, P=0.001), and Shannon index (3.25±0.14 vs 2.72±0.27, t=19.465, P=0.001). The differences were statistically significant (all P<0.05). However, there were no significant differences in gender, drainage volume and total number of bacterial liquid colonies between the two groups (all P>0.05). Both the standard donor and the parent donor met the donor screening criteria, and the preparation fluid and powder met the treatment criteria. Eight patients received the treatment of HIFT combined with fecal microbiota transplantation (FMT). Preliminary statistical results showed that HIFT combined with FMT improved ABC and CARS at the 1st, 2nd, 3rd and 4th months. The differences were statistically significant (all P<0.05). No severe adverse reaction occurred. Conclusion: Based on the previous research on FMT preparation system and the clinical technology in our center, this study developed a high standard HIFT preparation system, and explored the clinical study of HIFT combined with FMT, in order to provide an innovative therapy for the treatment of diseases.
Bacteria
;
Child
;
Fecal Microbiota Transplantation/methods*
;
Glycerol
;
Humans
;
Powders
;
Trypan Blue
2.Investigating the Sonodynamic-Radiosensitivity Effect of Gold Nanoparticles on HeLa Cervical Cancer Cells
Ahmad SHANEI ; Hadi AKBARI-ZADEH
Journal of Korean Medical Science 2019;34(37):e243-
BACKGROUND: In this article, we estimated the combined effect of radiotherapy (RT) with ultrasound (US) wave and the ability of gold nanoparticles (GNPs) to improve their combined therapeutic effects. METHODS: At first, HeLa cells received the various treatment modalities: RT (6 MV; 0.5, 1, and 2 Gy), US irradiation (1 MHz; 0.5, 1, and 1.5 W/cm2, 1 minute), and RT+US. Afterwards, the enhanced effect of US on RT was evaluated. Then, the effect of the synthesized GNPs at different concentrations (0.2, 1, and 5 µg/mL, 24 hours) was evaluated to assess the effect on HeLa cells combined with RT+US. Cell survival rates in the different treatment groups at 24, 48, and 72 hours post-treatment were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and trypan blue assays. RESULTS: Our results show US irradiation could enhance the effect of RT at the same radiation dose and could be utilized as a sensitizer agent for RT. Moreover, our findings indicate RT+US in combination with different nanoparticle concentrations could enhance the effect of RT+US so that they can improve the treatment results up to 9.93 times and act as sonodynamic-radiosensitivity. These results also indicate that the combination of RT with US along with GNPs has synergistic effects compared to RT or US alone. Cell survival results show that combining the low US waves (1.5 W/cm2), GNPs (5 μg/mL), and X-rays (2 Gy) increase the cytotoxicity on HeLa cell up to 95.8%. CONCLUSION: We concluded that GNPs could act as a good sensitizing agent in RT+US irradiation and could result in the synergistic effects.
Cell Survival
;
HeLa Cells
;
Humans
;
Nanoparticles
;
Radiotherapy
;
Therapeutic Uses
;
Trypan Blue
;
Ultrasonography
;
Uterine Cervical Neoplasms
3.Neural Stem Cell Death Mechanisms Induced by Amyloid Beta.
Jongmin LEE ; Hyun Hee PARK ; Seong Ho KOH ; Hojin CHOI
Dementia and Neurocognitive Disorders 2017;16(4):121-127
BACKGROUND AND PURPOSE: Amyloid beta (Aβ) is the main component of amyloid plaques, which are deposited in the brains of patients with Alzheimer's disease (AD). Biochemical and animal studies support the central role of Aβ in AD pathogenesis. Despite several investigations focused on the pathogenic mechanisms of Aβ, it is still unclear how Aβ accumulates in the central nervous system and subsequently initiates the disease at the cellular level. In this study, we investigated the pathogenic mechanisms of Aβ using proteomics and antibody microarrays. METHODS: To evaluate the effect of Aβ on neural stem cells (NSCs), we treated primary cultured cortical NSCs with several doses of Aβ for 48 h. A 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, trypan blue staining, and bromodeoxyuridine cell proliferation assay were performed. We detected several intracellular proteins that may be associated with Aβ by proteomics and Western blotting analysis. RESULTS: Various viability tests showed that Aβ decreased NSCs viability and cell proliferation in a concentration-dependent manner. Aβ treatment significantly decreased lactate dehydrogenase B, high-mobility group box 1, aldolase C, Ezrin, and survival signals including phosphorylated phosphoinositide 3-kinase, Akt, and glycogen synthase kinase-3β. CONCLUSIONS: These results suggest that several factors determined by proteomics and Western blot hold the clue to Aβ pathogenesis. Further studies are required to investigate the role of these factors.
Alzheimer Disease
;
Amyloid*
;
Animals
;
Blotting, Western
;
Brain
;
Bromodeoxyuridine
;
Cell Proliferation
;
Central Nervous System
;
Fructose-Bisphosphate Aldolase
;
Glycogen Synthase
;
Humans
;
L-Lactate Dehydrogenase
;
Neural Stem Cells*
;
Plaque, Amyloid
;
Proteomics
;
Trypan Blue
4.Elevated expression of DNMT1 is associated with increased expansion and proliferation of hematopoietic stem cells co-cultured with human MSCs.
Moharram AHMADNEJAD ; Naser AMIRIZADEH ; Roya MEHRASA ; Ahmad KARKHAH ; Mahin NIKOUGOFTAR ; Arezoo OODI
Blood Research 2017;52(1):25-30
BACKGROUND: Mesenchymal stem cells (MSCs) play an important role in hematopoietic stem cell (HSC) maintenance, proliferation, and apoptosis. DNA methyltransferase 1 (DNMT1) is considered an essential factor in the maintenance of HSCs in mammalian cells. Therefore, this study was conducted to evaluate the mRNA expression level of DNMT1 during cord blood (CB)-HSC ex vivo expansion with MSCs. METHODS: Ex vivo cultures of CB-HSCs were performed in three culture conditions for 7 days: cytokines, cytokines with MSCs, and only MSCs. Total and viable cell numbers were counted after 5 and 7 days using trypan blue stain, and the stem cell percentage was then evaluated by flow cytometry. Moreover, in vitro colony-forming unit assay was carried out to detect clonogenic potential of HSCs at days 0 and 7 using MethoCult H4434. Finally, DNMT1 mRNA expression level was evaluated by real-time polymerase chain reaction. RESULTS: Maximum CB-CD34⁺ cell expansion was observed on day 7 in all the three cultures. After 7 days, ex vivo expansion of CB-CD34⁺ cells indicated a significant decrease in DNMT1 expression in the cytokine cultures, whereas in the two co-culture conditions DNMT1 expression was increased. A significant difference between the number of CD34⁺ and CD34⁻ cells in the cytokine co-culture system was observed. CONCLUSION: These data indicated that an elevated expression of DNMT1 is associated with increased expansion and proliferation of HSCs co-cultured with human MSCs. Hence, DNMT1 may be a potential factor in the maintenance of expanded HSCs co-cultured with human MSCs.
Apoptosis
;
Cell Count
;
Coculture Techniques
;
Cytokines
;
DNA
;
Fetal Blood
;
Flow Cytometry
;
Hematopoietic Stem Cells*
;
Humans*
;
In Vitro Techniques
;
Mesenchymal Stromal Cells
;
Real-Time Polymerase Chain Reaction
;
RNA, Messenger
;
Stem Cells
;
Trypan Blue
5.Candesartan Restores the Amyloid Beta-Inhibited Proliferation of Neural Stem Cells by Activating the Phosphatidylinositol 3-Kinase Pathway.
Hojin CHOI ; Na Young CHOI ; Kyu Yong LEE ; Young Joo LEE ; Seong Ho KOH
Dementia and Neurocognitive Disorders 2017;16(3):64-71
BACKGROUND AND PURPOSE: Neurogenesis in the adult brain is important for memory and learning, and the alterations in neural stem cells (NSCs) may be an important aspect of Alzheimer's disease (AD) pathogenesis. The phosphatidylinositol 3-kinase (PI3K) pathway has been suggested to have an important role in neuronal cell survival and is highly involved in adult neurogenesis. Candesartan is an angiotensin II receptor antagonist used for the treatment of hypertension and several studies have reported that it also has some neuroprotective effects. We investigated whether candesartan could restore the amyloid-β(25–35) (Aβ₂₅₋₃₅) oligomer-inhibited proliferation of NSCs by focusing on the PI3K pathway. METHODS: To evaluate the effects of candesartan on the Aβ₂₅₋₃₅ oligomer-inhibited proliferation of NSCs, the NSCs were treated with several concentrations of candesartan and/or Aβ₂₅₋₃₅ oligomers, and MTT assay and trypan blue staining were performed. To evaluate the effect of candesartan on the Aβ-inhibited proliferation of NSCs, we performed a bromodeoxyuridine (BrdU) labeling assay. The levels of p85α PI3K, phosphorylated Akt (pAkt) (Ser473), phosphorylated glycogen sinthase kinase-3β (pGSK-3β) (Ser9), and heat shock transcription factor-1 (HSTF-1) were analyzed by Western blotting. RESULTS: The BrdU assays demonstrated that NSC proliferation decreased with Aβ25-35 oligomer treatment; however, a combined treatment with candesartan restored it. Western blotting displayed that candesartan treatment increased the expression levels of p85α PI3K, pAkt (Ser473), pGSK-3β (Ser9), and HSTF. The NSCs were pretreated with a PI3K inhibitor, LY294002; the effects of candesartan on the proliferation of NSCs inhibited by Aβ₂₅₋₃₅ oligomers were almost completely blocked. CONCLUSIONS: Together, these results suggest that candesartan restores the Aβ₂₅₋₃₅ oligomer-inhibited proliferation of NSCs by activating the PI3K pathway.
Adult
;
Alzheimer Disease
;
Amyloid*
;
Blotting, Western
;
Brain
;
Bromodeoxyuridine
;
Cell Survival
;
Glycogen
;
Hot Temperature
;
Humans
;
Hypertension
;
Learning
;
Memory
;
Neural Stem Cells*
;
Neurogenesis
;
Neurons
;
Neuroprotective Agents
;
Phosphatidylinositol 3-Kinase*
;
Phosphatidylinositols*
;
Receptors, Angiotensin
;
Shock
;
Trypan Blue
6.Non-homologous End Joining Inhibitor SCR-7 to Exacerbate Low-dose Doxorubicin Cytotoxicity in HeLa Cells.
Ajay KUMAR ; Devyani BHATKAR ; Devashree JAHAGIRDAR ; Nilesh Kumar SHARMA
Journal of Cancer Prevention 2017;22(1):47-54
Among the genotoxic drug regimens, doxorubicin (DOX) is known for its high-dose side effects in several carcinomas, including cervical cancer. This study reports on testing the combined use of a DOX genotoxic drug and SCR-7 non-homologous end joining (NHEJ) inhibitor for HeLa cells. An in vitro DNA damaging assay of DOX was performed on plasmid and genomic DNA substrate. In vitro cytotoxicity was investigated using trypan blue dye exclusion, DNA metabolizing, and propidium iodide-based flow cytometric assays. DOX (between 20–100 μM) displayed clear DNA binding and interaction, such as the shearing and smearing of plasmid and genomic DNA. DNA metabolizing assay data indicate that HeLa lysate with DOX and SCR-7 treatment exhibited better in vitro plasmid DNA stability compared with DOX treatment alone. SCR-7 augmented the effects of low-dose DOX by demonstrating enhanced cell death from 15% to 50%. The flow cytometric data also supported that the combination of SCR-7 with DOX lead to a 23% increase in propidium iodide-based HeLa staining, thus indicating enhanced death. In summary, the inhibition of NHEJ DNA repair pathway can potentiate low-dose DOX to produce appreciable cytotoxicity in HeLa cells.
Cell Death
;
DNA
;
DNA Damage
;
DNA End-Joining Repair
;
DNA Repair
;
Doxorubicin*
;
Drug Therapy
;
Genomic Instability
;
HeLa Cells*
;
Humans
;
In Vitro Techniques
;
Plasmids
;
Propidium
;
Trypan Blue
;
Uterine Cervical Neoplasms
7.Effect of Trypan Blue on the Survival of Cultured Trabecular Meshwork Cells.
Hye Ri KANG ; Seok Jin HWANG ; Jae Woo KIM
Journal of the Korean Ophthalmological Society 2017;58(3):327-332
PURPOSE: To evaluate the effects of trypan blue (TB) on the survival of cultured human trabecular meshwork cells (HTMCs). METHODS: Primarily cultured HTMCs were exposed to 0.05, 0.10 or 0.50% TB for 1, 5 or 30 min. Cellular survival was assessed using the MTT assay and degree of apoptosis was analyzed with flow cytometry using annexin-V/propidium iodide double staining. RESULTS: Long-term exposure or high concentration of TB decreased the survival of HTMCs (p < 0.05). In flow cytometric analysis, exposure to 0.50% TB for 30 min increased the degree of apoptosis (p < 0.05). Commercial TB decreased cell survival after exposure for 5 min and increased the degree of apoptosis after exposure for 30 min (p < 0.05). CONCLUSIONS: TB may cause cellular damage of cultured HTMCs and apoptosis could be the underlying mechanism. In TB-assisted cataract surgery, TB should be used for the shortest time possible and removed completely.
Apoptosis
;
Cataract
;
Cell Survival
;
Flow Cytometry
;
Humans
;
Trabecular Meshwork*
;
Trypan Blue*
8.Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes.
Min Jae KIM ; Bong Kwang JUNG ; Jaeeun CHO ; Hyemi SONG ; Kyung Ho PYO ; Ji Min LEE ; Min Kyung KIM ; Jong Yil CHAI
The Korean Journal of Parasitology 2016;54(2):147-154
Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle.
Animals
;
Cell Count
;
Cell Cycle*
;
Cell Line
;
Cell Proliferation*
;
Exosomes*
;
Flow Cytometry
;
Microarray Analysis
;
MicroRNAs
;
Microscopy, Confocal
;
Myoblasts
;
Rats
;
S Phase
;
Toxoplasma*
;
Toxoplasmosis
;
Trypan Blue
9.Thiamylal sodium increased inflammation and the proliferation of vascular smooth muscle cells.
Korean Journal of Anesthesiology 2016;69(3):262-269
BACKGROUND: Thiamylal sodium is a common anesthetic barbiturate prepared in alkaline solution for clinical use. There is no previously reported study on the effects of barbiturates on the inflammation and proliferation of vascular smooth muscle cells (VSMCs). Here, we examined the effects of clinical-grade thiamylal sodium solution (TSS) on the inflammation and proliferation of rat VSMCs. METHODS: Expression levels of interleukin (IL)-1α, IL-1β, IL-6, and toll-like receptors in rat VSMCs were detected by quantitative reverse transcription-polymerase chain reaction and microarray analyses. The production of IL-6 by cultured VSMCs or ex vivo-cultured rat aortic segments was detected in supernatants by enzyme-linked immunosorbent assay. VSMC proliferation and viability were determined by the water-soluble tetrazolium-1 assay and trypan blue staining, respectively. RESULTS: TSS increased expression of IL-1α, IL-6, and TLR4 in VSMCs in a dose-dependent manner, and reduced IL-1β expression. Ex vivo TSS stimulation of rat aorta also increased IL-6. Low concentrations of TSS enhanced VSMC proliferation, while high concentrations reduced both cell proliferation and viability. Expression of IL-1 receptor antagonist, which regulates cell proliferation, was not increased by TSS stimulation. Exposure of cells to the TSS additive, sodium carbonate, resulted in significant upregulation of IL-1α and IL-6 mRNA levels, to a greater extent than TSS. CONCLUSIONS: TSS-induced proinflammatory cytokine production by VSMCs is caused by sodium carbonate. However, pure thiamylal sodium has an anti-inflammatory effect in VSMCs. TSS exposure to VSMCs may promote vascular inflammation, leading to the progression of atherosclerosis or in-stent restenosis, resulting in vessel bypass graft failure.
Animals
;
Aorta
;
Atherosclerosis
;
Barbiturates
;
Carbon
;
Cell Proliferation
;
Enzyme-Linked Immunosorbent Assay
;
Inflammation*
;
Interleukin-1
;
Interleukin-6
;
Interleukins
;
Muscle, Smooth, Vascular*
;
Rats
;
RNA, Messenger
;
Sodium
;
Thiamylal*
;
Toll-Like Receptors
;
Transplants
;
Trypan Blue
;
Up-Regulation
10.Anti-apoptotic effect of fermented Citrus sunki peel extract on chemical hypoxia-induced neuronal injury.
Journal of Nutrition and Health 2015;48(5):451-456
PURPOSE: Neuronal apoptotic events induced by aging and hypoxic/ischemic conditions is an important risk factor in neurodegenerative diseases such as ischemia stroke and Alzheimer's disease. The peel of Citrus sunki Hort. ex Tanaka has long been used as a traditional medicine, based on multiple biological activities including anti-oxidant, anti-inflammation, and anti-obesity. In the current study, we examined the actions of fermented C. sunki peel extract against cobalt chloride (CoCl2)-mediated hypoxic death in human neuroblastoma SH-SY5Y cells. METHODS: Cell viability was measured by trypan blue exclusion. Expression of apoptosis related proteins and release of cytochrome c were detected by western blot. Production of intracellular reactive oxygen species (ROS) and apoptotic morphology were examined using 2',7'-dichlorofluorescin diacetate (DCF-DA) and 4',6-diamidino-2-phenylindole (DAPI) staining. RESULTS: Exposure to CoCl2, a well-known mimetic agent of hypoxic/ischemic condition, resulted in neuronal cell death via caspase-3 dependent pathway. Extract of fermented C. sunki peel significantly rescued the CoCl2-induced neuronal toxicity with the cell viability and appearance of apoptotic morphology. Cytoprotection with fermented C. sunki peel extract was associated with a decrease in activities of caspase-3 and cleavage of poly (ADP ribose) polymerase (PARP). In addition, increase in the intracellular ROS and release of cytochrome c from mitochondria to the cytosol were inhibited by treatment with extract of fermented C. sunki peel. CONCLUSION: Based on these data, fermented C. sunki peel extract might have a protective effect against CoCl2-induced neuronal injury partly through generation of ROS and effectors involved in mitochondrial mediated apoptosis.
Aging
;
Alzheimer Disease
;
Anoxia
;
Apoptosis
;
Blotting, Western
;
Caspase 3
;
Cell Death
;
Cell Survival
;
Citrus*
;
Cobalt
;
Cytochromes c
;
Cytoprotection
;
Cytosol
;
Humans
;
Ischemia
;
Medicine, Traditional
;
Mitochondria
;
Neuroblastoma
;
Neurodegenerative Diseases
;
Neurons*
;
Reactive Oxygen Species
;
Risk Factors
;
Stroke
;
Trypan Blue

Result Analysis
Print
Save
E-mail