1.Loss of RBFOX2 inhibits meiotic initiation in male mice.
Lin YAN ; Jian CHEN ; Yan NING ; Chunsheng HAN
Chinese Journal of Biotechnology 2023;39(10):4108-4122
Meiotic initiation is a critical step in gametogenesis. Recently, some genes required for meiotic initiation have been identified. However, meiosis-initiating factors and the underlying mechanisms are far from being fully understood. We have established a long-term culture system of spermatogonial stem cells (SSCs) and an in vitro model of meiotic initiation using mouse SSCs. Our previous study revealed that the RNA-binding protein RBFOX2 may regulate meiotic initiation, but the role and the mechanism need to be further elucidated. In this study, we constructed RBFOX2 knockdown SSC lines by using lentivirus-mediated gene delivery method, and found that the knockdown SSCs underwent normal self-renewal, mitosis and differentiation. However, they were unable to initiate meiosis when treated with retinoic acid, and they underwent apoptosis. These results indicate that RBFOX2 plays an essential role in meiotic initiation of spermatogonia. This work provides new clues for understanding the functions of RNA-binding proteins in meiotic initiation.
Mice
;
Male
;
Animals
;
Spermatogonia/metabolism*
;
Meiosis/genetics*
;
Cell Differentiation
;
Tretinoin/pharmacology*
;
Mitosis
;
Testis/metabolism*
2.Effect of a Novel Dihydroartemisinin Dimer Containing Nitrogen Atoms SM 1044 on Apoptosis of Human Leukemia Cell Line NB4-R1.
Wen CUI ; Zheng XUE ; Ling-Ling ZHAO ; Ying LI ; Jian-Qing MI
Journal of Experimental Hematology 2023;31(3):659-665
OBJECTIVE:
To investigate the effect of a water-soluble novel dihydroartemisinin dimer containing nitrogen atoms SM 1044 on the apoptosis of all-trans retinoic acid (ATRA) resistant acute promyelocytic leukemia (APL) NB4-R1 cells and its potential mechanism.
METHODS:
The effects of SM 1044 on cell apoptosis, mitochondrial transmembrane potential, and the level of reactive oxygen species (ROS) were assessed by flow cytometry. Expressions of apoptosis-related proteins were determined by Western blot. The effects of SM 1044 on MAPK (ERK, JNK) signaling pathway, PML/RARα fusion protein, and expressions of apoptosis-related proteins were detected by Western blot.
RESULTS:
SM 1044 could significantly induce apoptosis and the loss of mitochondrial transmembrane potential in NB4-R1 cells, and activate apoptosis-related proteins caspase-3, caspase-8, caspase-9 and poly (ADP-ribose) polymerase (PARP). SM 1044 could also induce NB4-R1 cells to produce ROS. Western blot showed that SM 1044 activated the phosphorylation of MAPK (ERK, JNK) signaling pathway and down-regulated the expression of PML/RARα fusion protein.
CONCLUSION
SM 1044 can induce apoptosis of ATRA resistant APL NB4-R1 cells, which may be related to ROS/ERK and ROS/JNK signaling pathway, and can also induce by down-regulating PML/RARα fusion protein.
Humans
;
Reactive Oxygen Species/pharmacology*
;
Tretinoin/pharmacology*
;
Leukemia, Promyelocytic, Acute
;
Cell Line
;
Apoptosis
;
Oncogene Proteins, Fusion
;
Cell Differentiation
3.The characteristics of neutrophil extracellular traps produced by all-trans retinoic acid-induced dHL-60 under PMA stimulation.
Wang LIU ; Jinhua FANG ; Tiantian HONG ; Jiaqi HUANG ; Baisong ZHAO ; Ying FANG ; Jianhua WU ; Jiangguo LIN
Journal of Biomedical Engineering 2022;39(5):909-918
Extracellular traps released by neutrophils (neutrophil extracellular traps, NETs) are a double-edged sword, and understanding the mechanism of NET formation is of great significance for disease treatment. However, the short lifespan, the large individual differences, and the inability to perform gene editing render it difficult to decipher NET formation using neutrophils. It is necessary to find a model cell to replace neutrophils to study the mechanism of NET formation. In this study, we used different concentrations (0, 0.1, 1, and 10 μmol/L) of all-trans retinoic acid (ATRA) to differentiate HL-60 cells for different days (1, 3, 5, and 7 days). By detecting the cell viability and nuclear morphology of cells, we confirmed that HL-60 cells were differentiated to neutrophil-like cells (dHL-60) after treated with ATRA for at least 5 days. Using immunofluorescence staining to detect the formation of NETs, we demonstrated that dHL-60 cells differentiated for 5 days with 1 μmol/L ATRA could generate NETs comparable to those produced by neutrophils upon phorbol 12-myristate 13-acetate (PMA) stimulation, without histone H3 citrullination. Furthermore, the formation of NETs by dHL-60 cells were NADPH-dependent and PAD4-independent, consistent with neutrophils. Taken together, these observations suggest that dHL-60 cells differentiated with 1 μmol/L ATRA for 5 days can be used as a model cell for neutrophils to study the mechanism of NET formation.
Humans
;
Extracellular Traps
;
Tetradecanoylphorbol Acetate/pharmacology*
;
Neutrophils
;
HL-60 Cells
;
Tretinoin/pharmacology*
4.Multi-omics analysis of regulating effects of hyperoside on lipid metabolism in high-fat diet mice.
Ya-Ting JIAO ; Wen-Shu ZHANG ; Shan-Shan PAN ; Ming-Jie XIE
Acta Physiologica Sinica 2022;74(6):970-978
The aim of this study was to explore the regulating effects of hyperoside (Hyp) on lipid metabolism in high-fat diet mice. The high-fat diet mouse model was established by high-fat diet induction. After 5 weeks of Hyp intragastric administration in high-fat diet mice, the serum lipid levels before and after Hyp administration were measured by the corresponding kits. The tissue structure of mouse liver was observed by HE staining before and after Hyp administration. The changes of intestinal flora and transcriptome were measured by Illumina platforms. Liquid chromatography-mass spectrometry (LC-MS) was used to determine non-targeted metabolites. The results showed that Hyp significantly reduced lipid levels in the high-fat diet mice and effectively restored the external morphology and internal structure of liver tissue. Hyp changed the species composition of the intestinal flora in high-fat diet mice, increased the abundance of beneficial flora such as Ruminococcus, and decreased the abundance of harmful flora such as Sutterella. Combined multi-omics analysis revealed that the effect of retinoic acid on lipid metabolism was significant in the high-fat diet mice treated with Hyp, while the increase of retinoic acid content was significantly negatively correlated with the expression of genes such as cyp1a2 and ugt1a6b, positively correlated with AF12 abundance, and significantly negatively correlated with unidentified_Desulfovibrionaceae abundance. These results suggest that Hyp may modulate the abundance of AF12, unidentified_Desulfovibrionaceae and inhibit the expression of genes such as cyp1a2 and ugt1a6b, thus increasing the content of retinoic acid and regulating lipid metabolism in the high-fat diet mice.
Animals
;
Mice
;
Diet, High-Fat/adverse effects*
;
Lipid Metabolism
;
Cytochrome P-450 CYP1A2/pharmacology*
;
Multiomics
;
Liver
;
Lipids/pharmacology*
;
Tretinoin/pharmacology*
;
Mice, Inbred C57BL
5.Effect of PADI4 on the Expression of Inflammatory Cytokines During NB4 Cells Differentiation.
Qing-Wei GUO ; Fu LI ; Li SONG ; Ya-Ping WANG ; Xiao-Mei YANG
Journal of Experimental Hematology 2021;29(4):1065-1070
OBJECTIVE:
To investigate the expression of peptidylarginine deiminase 4 (PADI4) during the process of differentiation into granulocyte of NB4 cells induced by all-trans-retinoic acid (ATRA) and whether PADI4 is involved in the inflammatory cytokines expression.
METHODS:
Granulocyte differentiation model of NB4 cells induced by ATRA was established. The cell morphology changes were observed by Wright-Giemsa staining. The expression of cell differentiation marker CD11b was analyzed by flow cytometry. The mRNA and protein expression of PADI4 was detected by RT-PCR and Western blot, respectively. The expression of tumor necrosis factor (TNF) α and interleukin (IL) 1β was analyzed by ELISA, and also examined with the knockdown of PADI4 expression by siRNA.
RESULTS:
After NB4 cells induced by ATRA, the cytoplasm increased and the ratio of nuclear to cytoplasmic was reduced. Nuclear dented, and rod-shaped nucleus, lobulated phenomenon increased (P<0.05). Flow cytometry analysis results showed that the cell surface molecule CD11b expression increased (P<0.01). RT-PCR and Western blot showed the expression of PADI4 increased at both transcriptional and translational levels during the process of the differentiation. ELISA showed TNF-α and IL-1β secretion increased in differentiated macrophages, while they could be inhibited by PADI4-specific siRNA.
CONCLUSION
During the differentiation into granulocyte of NB4 cells induced by ATRA, PADI4 expression increased. Furthermore, PADI4 appeared to play a critical role in inflammatory cytokines secretion.
Cell Differentiation
;
Cell Line, Tumor
;
Cytokines/metabolism*
;
Granulocytes
;
Humans
;
Leukemia, Promyelocytic, Acute
;
Protein-Arginine Deiminase Type 4/metabolism*
;
Tretinoin/pharmacology*
6.Safflower Yellow Compounds Alleviate Okadaic Acid-Induced Impairment of Neurite Outgrowth in Differentiated SH-SY5Y Cells.
Zhen Hua WANG ; Xiao Bing SHI ; Gang LI ; Xue Yan HAO ; Zhen Zhen YUAN ; Xiao Hai CAO ; Hong Lun WANG ; Ji LI ; Cheng Jun MA
Biomedical and Environmental Sciences 2020;33(10):812-816
7.Ursolic Acid Prevents Retinoic Acid-Induced Bone Loss in Rats.
Min CHENG ; Xu-Hua LIANG ; Qing-Wei WANG ; Ya-Ting DENG ; Zhi-Xin ZHAO ; Xue-Ying LIU
Chinese journal of integrative medicine 2019;25(3):210-215
OBJECTIVE:
To examine the effects of ursolic acid (UA) on mitigating retinoic acid (RA)-induced osteoporosis in rats.
METHODS:
Fifty female Sprague-Dawley rats were randomly divided into the control group (n=10) and the osteoporosis group (n=40). The 40 osteoporosis rats were induced by 75 mg/(kg•d) RA once daily for 2 weeks, and then were randomly assigned to vehicle control (model), low-, middle-, and high-dose UA [(UA-L, UA-M, UA-H; 30, 60, 120 mg/(kg•d), respectively] groups (10 rats each). UA were administered once daily to the rats from the 3rd weeks for up to 4 weeks by gavage. Bone turnover markers [serum alkaline phosphatase (ALP), osteocalcin (OCN), urine deoxypyridinoline (DPD)] and other parameters, including serum calcium (S-Ca), serum phosphorus (S-P), urine calcium (U-Ca), urine phosphorus (U-P), and bone mineral density (BMD) of the femur, 4th lumbar vertebra and tibia, bone biomechanical properties and trabecular microarchitecture, were measured.
RESULTS:
The osteoporosis in rats was successfully induced by RA. Compared with the model group, UA-M and UA-H significantly reversed the RA-induced changes in S-P, U-Ca, U-P, ALP, OCN and urine DPD ratio and markedly enhanced the BMD of right femur, 4th lumbar vertebra and tibia (Plt;0.05 or Plt;0.01). Further, biomechanical test and microcomputed tomography evaluation also showed that UA-H drastically improved biomechanical properties and trabecular microarchitecture (Plt;0.05 or Plt;0.01).
CONCLUSION
UA could promote bone formation, increase osteoblastic activity and reduce osteoclastic activity in rats, indicating that UA might be a potential therapeutic of RA-induced acute osteoporosis.
Animals
;
Biomechanical Phenomena
;
Bone Density
;
drug effects
;
Bone Remodeling
;
drug effects
;
Female
;
Osteoporosis
;
diagnostic imaging
;
drug therapy
;
Rats
;
Rats, Sprague-Dawley
;
Tretinoin
;
toxicity
;
Triterpenes
;
pharmacology
;
therapeutic use
;
X-Ray Microtomography
8.All-trans-retinoic acid generation is an antidotal clearance pathway for all-trans-retinal in the retina.
Qing-Qing XIA ; Ling-Min ZHANG ; Ying-Ying ZHOU ; Ya-Lin WU ; Jie LI
Journal of Zhejiang University. Science. B 2019;20(12):960-971
The present study was designed to analyze the metabolites of all-trans-retinal (atRal) and compare the cytotoxicity of atRal versus its derivative all-trans-retinoic acid (atRA) in human retinal pigment epithelial (RPE) cells. We confirmed that atRA was produced in normal pig neural retina and RPE. The amount of all-trans-retinol (atROL) converted from atRal was about 2.7 times that of atRal-derived atRA after incubating RPE cells with 10 μmol/L atRal for 24 h, whereas atRA in medium supernatant is more plentiful (91 vs. 29 pmol/mL), suggesting that atRA conversion facilitates elimination of excess atRal in the retina. Moreover, we found that mRNA expression of retinoic acid-specific hydroxylase CYP26b1 was dose-dependently up-regulated by atRal exposure in RPE cells, indicating that atRA inactivation may be also initiated in atRal-accumulated RPE cells. Our data show that atRA-caused viability inhibition was evidently reduced compared with the equal concentration of its precursor atRal. Excess accumulation of atRal provoked intracellular reactive oxygen species (ROS) overproduction, heme oxygenase-1 (HO-1) expression, and increased cleaved poly(ADP-ribose) polymerase 1 (PARP1) expression in RPE cells. In contrast, comparable dosage of atRA-induced oxidative stress was much weaker, and it could not activate apoptosis in RPE cells. These results suggest that atRA generation is an antidotal metabolism pathway for atRal in the retina. Moreover, we found that in the eyes of ABCA4-/-RDH8-/- mice, a mouse model with atRal accumulation in the retina, the atRA content was almost the same as that in the wild type. It is possible that atRal accumulation simultaneously and equally promotes atRA synthesis and clearance in eyes of ABCA4-/-RDH8-/- mice, thus inhibiting the further increase of atRA in the retina. Our present study provides further insights into atRal clearance in the retina.
ATP-Binding Cassette Transporters/physiology*
;
Alcohol Oxidoreductases/physiology*
;
Animals
;
Cell Survival/drug effects*
;
Cells, Cultured
;
Humans
;
Inactivation, Metabolic
;
Mice
;
Retina/metabolism*
;
Retinal Pigment Epithelium/metabolism*
;
Swine
;
Tretinoin/pharmacology*
9.LRRC25 plays a key role in all-trans retinoic acid-induced granulocytic differentiation as a novel potential leukocyte differentiation antigen.
Weili LIU ; Ting LI ; Pingzhang WANG ; Wanchang LIU ; Fujun LIU ; Xiaoning MO ; Zhengyang LIU ; Quansheng SONG ; Ping LV ; Guorui RUAN ; Wenling HAN
Protein & Cell 2018;9(9):785-798
Leukocyte differentiation antigens (LDAs) play important roles in the immune system, by serving as surface markers and participating in multiple biological activities, such as recognizing pathogens, mediating membrane signals, interacting with other cells or systems, and regulating cell differentiation and activation. Data mining is a powerful tool used to identify novel LDAs from whole genome. LRRC25 (leucine rich repeat-containing 25) was predicted to have a role in the function of myeloid cells by a large-scale "omics" data analysis. Further experimental validation showed that LRRC25 is highly expressed in primary myeloid cells, such as granulocytes and monocytes, and lowly/intermediately expressed in B cells, but not in T cells and almost all NK cells. It was down-regulated in multiple acute myeloid leukemia (AML) cell lines and bone marrow cells of AML patients and up-regulated after all-trans retinoic acid (ATRA)-mediated granulocytic differentiation in AML cell lines and acute promyelocytic leukemia (APL; AML-M3, FAB classification) cells. Localization analysis showed that LRRC25 is a type I transmembrane molecule. Although ectopic LRRC25 did not promote spontaneous differentiation of NB4 cells, knockdown of LRRC25 by siRNA or shRNA and knockout of LRRC25 by the CRISPR-Cas9 system attenuated ATRA-induced terminal granulocytic differentiation, and restoration of LRRC25 in knockout cells could rescue ATRA-induced granulocytic differentiation. Therefore, LRRC25, a potential leukocyte differentiation antigen, is a key regulator of ATRA-induced granulocytic differentiation.
Antigens, Differentiation
;
immunology
;
metabolism
;
Cell Differentiation
;
drug effects
;
Cell Line, Tumor
;
Granulocytes
;
cytology
;
drug effects
;
immunology
;
metabolism
;
Humans
;
Leukocytes
;
cytology
;
drug effects
;
immunology
;
metabolism
;
Membrane Proteins
;
antagonists & inhibitors
;
immunology
;
metabolism
;
RNA, Small Interfering
;
pharmacology
;
Tretinoin
;
pharmacology
10.Nr2e1 Downregulation Is Involved in Excess Retinoic Acid-induced Developmental Abnormality in the Mouse Brain.
Juan YU ; Qian GUO ; Jian Bing MU ; Ting ZHANG ; Ren Ke LI ; Jun XIE
Biomedical and Environmental Sciences 2017;30(3):185-193
OBJECTIVEThis study aimed to investigate the expression pattern and function of Nuclear receptor subfamily 2 group E member 1 (Nr2e1) in retinoic acid (RA)-induced brain abnormality.
METHODSThe mouse model of brain abnormality was established by administering 28 mg/kg RA, and neural stem cells (NSCs) were isolated from the mouse embryo and cultured in vitro. Nr2e1 expression was detected by whole mount in situ hybridization, RT-PCR, and Western blotting. Nr2e1 function was determined by transducing Nr2e1 shRNA into NSCs, and the effect on the sonic hedgehog (Shh) signaling pathway was assessed in the cells. In addition, the regulation of Nr2e1 expression by RA was also determined in vitro.
RESULTSNr2e1 expression was significantly downregulated in the brain and NSCs of RA-treated mouse embryos, and knockdown of Nr2e1 affected the proliferation of NSCs in vitro. In addition, a similar expression pattern of Nr2e1 and RA receptor (RAR) α was observed after treatment of NSCs with different concentrations of RA.
CONCLUSIONOur study demonstrated that Nr2e1 could be regulated by RA, which would aid a better understanding of the mechanism underlying RA-induced brain abnormality.
Animals ; Brain ; cytology ; embryology ; Cell Proliferation ; Down-Regulation ; Gene Expression Regulation ; Gene Expression Regulation, Developmental ; drug effects ; Mice ; Mice, Inbred C57BL ; Neural Stem Cells ; drug effects ; physiology ; Receptors, Cytoplasmic and Nuclear ; genetics ; metabolism ; Tretinoin ; pharmacology

Result Analysis
Print
Save
E-mail