1.Effects of VX765 on osteoarthritis and chondrocyte inflammation in rats.
Wanran HUANG ; Junxue TU ; Aiqing QIAO ; Chujun HE
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(1):74-81
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effects and underlying mechanisms of VX765 on osteoarthritis (OA) and chondrocytes inflammation in rats.
		                        		
		                        			METHODS:
		                        			Chondrocytes were isolated from the knee joints of 4-week-old Sprague Dawley (SD) rats. The third-generation cells were subjected to cell counting kit 8 (CCK-8) analysis to assess the impact of various concentrations (0, 1, 5, 10, 20, 50, 100 μmol/L) of VX765 on rat chondrocyte activity. An in vitro lipopolysaccharide (LPS) induced cell inflammation model was employed, dividing cells into control group, LPS group, VX765 concentration 1 group and VX765 concentration 2 group without obvious cytotoxicity. Western blot, real-time fluorescence quantitative PCR, and ELISA were conducted to measure the expression levels of inflammatory factors-transforming growth factor β 1 (TGF-β 1), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α). Additionally, Western blot and immunofluorescence staining were employed to assess the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Thirty-two SD rats were randomly assigned to sham surgery group (group A), OA group (group B), OA+VX765 (50 mg/kg) group (group C), and OA+VX765 (100 mg/kg) group (group D), with 8 rats in each group. Group A underwent a sham operation with a medial incision, while groups B to D underwent additional transverse incisions to the medial collateral ligament and anterior cruciate ligament, with removal of the medial meniscus. One week post-surgery, groups C and D were orally administered 50 mg/kg and 100 mg/kg VX765, respectively, while groups A and B received an equivalent volume of saline. Histopathological examination using HE and safranin-fast green staining was performed, and Mankin scoring was utilized for evaluation. Immunohistochemical staining technique was employed to analyze the expressions of matrix metalloproteinase 13 (MMP-13) and collagen type Ⅱ.
		                        		
		                        			RESULTS:
		                        			The CCK-8 assay indicated a significant decrease in cell viability at VX765 concentrations exceeding 10 μmol/L ( P<0.05), so 4 μmol/L and 8 μmol/L VX765 without obvious cytotoxicity were selected for subsequent experiments. Following LPS induction, the expressions of TGF-β 1, IL-6, and TNF-α in cells significantly increased when compared with the control group ( P<0.05). However, intervention with 4 μmol/L and 8 μmol/L VX765 led to a significant decrease in expression compared to the LPS group ( P<0.05). Western blot and immunofluorescence staining demonstrated a significant upregulation of Nrf2 pathway-related molecules Nrf2 and HO-1 protein expressions by VX765 ( P<0.05), indicating Nrf2 pathway activation. Histopathological examination of rat knee joint tissues and immunohistochemical staining revealed that, compared to group B, treatment with VX765 in groups C and D improved joint structural damage in rat OA, alleviated inflammatory reactions, downregulated MMP-13 expression, and increased collagen type Ⅱ expression.
		                        		
		                        			CONCLUSION
		                        			VX765 can improve rat OA and reduce chondrocyte inflammation, possibly through the activation of the Nrf2 pathway.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Chondrocytes/metabolism*
		                        			;
		                        		
		                        			Matrix Metalloproteinase 13/metabolism*
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Collagen Type II/metabolism*
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			Lipopolysaccharides/pharmacology*
		                        			;
		                        		
		                        			NF-E2-Related Factor 2/pharmacology*
		                        			;
		                        		
		                        			Inflammation/drug therapy*
		                        			;
		                        		
		                        			Osteoarthritis/metabolism*
		                        			;
		                        		
		                        			Transforming Growth Factor beta1/metabolism*
		                        			;
		                        		
		                        			Dipeptides
		                        			;
		                        		
		                        			para-Aminobenzoates
		                        			
		                        		
		                        	
2.Effect of recombinant human fibroblast growth factor 21 on the mineralization of cementoblasts and its related mechanism.
Hao WU ; Ying LI ; Yuzhuo WANG ; Jize YU ; Xingfu BAO ; Min HU
West China Journal of Stomatology 2023;41(2):140-148
		                        		
		                        			OBJECTIVES:
		                        			To investigate the effect of recombinant human fibroblast growth factor 21 (rhFGF21) on the proliferation and mineralization of cementoblasts and its mechanism.
		                        		
		                        			METHODS:
		                        			Hematoxylin eosin, immunohistochemical staining, and immunofluorescence were used to detect the expression and distribution of fibroblast growth factor 21 (FGF21) in rat periodontal tissues and cementoblasts (OCCM-30), separately. Cell Counting Kit-8 was used to detect the proliferation of OCCM-30 under treatment with rhFGF21. Alkaline phosphatase staining and Alizarin Red staining were used to detect the mineralization state of OCCM-30 after 3 and 7 days of mineralization induction. The transcription and protein expression of the osteogenic-related genes Runx2 and Osterix were detected by real-time quantitative polymerase chain reaction (PCR) and Western blot analysis. The expression levels of genes of transforming growth factor β (TGFβ)/bone morphogenetic protein (BMP) signaling pathway in OCCM-30 were detected through PCR array analysis.
		                        		
		                        			RESULTS:
		                        			FGF21 was expressed in rat periodontal tissues and OCCM-30. Although rhFGF21 had no significant effect on the proliferation of OCCM-30, treatment with 50 ng/mL rhFGF21 could promote the mineralization of OCCM-30 cells after 7 days of mineralization induction. The transcriptional levels of Runx2 and Osterix increased significantly at 3 days of mineralization induction and decreased at 5 days of mineralization induction. Western blot analysis showed that the protein expression levels of Runx2 and Osterix increased during mineralization induction. rhFGF21 up-regulated Bmpr1b protein expression in cells.
		                        		
		                        			CONCLUSIONS
		                        			rhFGF21 can promote the mineralization ability of OCCM-30. This effect is related to the activation of the TGFβ/BMP signaling pathway.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Dental Cementum
		                        			;
		                        		
		                        			Core Binding Factor Alpha 1 Subunit/metabolism*
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Bone Morphogenetic Proteins/metabolism*
		                        			;
		                        		
		                        			Transforming Growth Factor beta/pharmacology*
		                        			
		                        		
		                        	
3.Effect of Isodon ternifolius-medicated serum on hepatic stellate cells based on TLR4/NF-κB/NLRP3 signaling pathway.
Gui-Dong HUANG ; Zhi-Pin ZHOU ; Zhi PANG ; Le QIN ; Rui-Sheng WU ; Yong CHEN ; Xiao-Xue YE
China Journal of Chinese Materia Medica 2023;48(14):3913-3921
		                        		
		                        			
		                        			The present study aimed to investigate the inhibitory effect and mechanism of Isodon terricolous-medicated serum on lipopolysaccharide(LPS)-induced hepatic stellate cell(HSC) activation. LPS-induced HSCs were divided into a blank control group, an LPS model group, a colchicine-medicated serum group, an LPS + blank serum group, an I. terricolous-medicated serum group, a Toll-like receptor 4(TLR4) blocker group, and a TLR4 blocker + I. terricolous-medicated serum group. HSC proliferation was detected by methyl thiazolyl tetrazolium(MTT) assay. Enzyme-linked immunosorbent assay(ELISA) was used to measure type Ⅰ collagen(COL Ⅰ), COL Ⅲ, transforming growth factor-β1(TGF-β1), intercellular adhesion molecule-1(ICAM-1), α-smooth muscle actin(α-SMA), vascular cell adhesion molecule-1(VCAM-1), cysteinyl aspartate-specific proteinase-1(caspase-1), and monocyte chemotactic protein-1(MCP-1). Real-time PCR(RT-PCR) was used to detect mRNA expression of TLR4, IκBα, and NOD-like receptor thermal protein domain associated protein 3(NLRP3), nuclear factor-κB(NF-κB) p65, gasdermin D(GSDMD), and apoptosis-associated speck-like protein containing a CARD(ASC) in HSCs. Western blot(WB) was used to detect the protein levels of TLR4, p-IκBα, NF-κB p65, NLRP3, ASC, and GSDMD in HSCs. The results showed that I. terricolous-medicated serum could inhibit the proliferation activity of HSCs and inhibit the secretion of COL Ⅰ, COL Ⅲ, α-SMA, TGF-β1, caspase-1, MCP-1, VCAM-1, and ICAM-1 in HSCs. Compared with the LPS model group, the I. terricolous-medicated serum group, the colchicine-medicated serum group, and the TLR4 blocker group showed down-regulated expression of p-IκBα, NLRP3, NF-κB p65, GSDMD, and ASC, and up-regulated expression of IκBα. Compared with the TLR4 blocker group, the TLR4 blocker + I. terricolous-medicated serum group showed decreased expression of TLR4, p-IκBα, NLRP3, NF-κB p65, GSDMD, and ASC, and increased expression of IκBα. In conclusion, I. terricolous-medicated serum down-regulates HSC activation by inhibiting the TLR4/NF-κB/NLRP3 signaling pathway.
		                        		
		                        		
		                        		
		                        			NF-kappa B/metabolism*
		                        			;
		                        		
		                        			Hepatic Stellate Cells
		                        			;
		                        		
		                        			Transforming Growth Factor beta1/metabolism*
		                        			;
		                        		
		                        			NF-KappaB Inhibitor alpha/metabolism*
		                        			;
		                        		
		                        			Intercellular Adhesion Molecule-1/metabolism*
		                        			;
		                        		
		                        			Isodon
		                        			;
		                        		
		                        			NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
		                        			;
		                        		
		                        			Toll-Like Receptor 4/metabolism*
		                        			;
		                        		
		                        			Vascular Cell Adhesion Molecule-1/metabolism*
		                        			;
		                        		
		                        			Lipopolysaccharides/pharmacology*
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Colchicine/pharmacology*
		                        			;
		                        		
		                        			Caspases
		                        			
		                        		
		                        	
4.Knockdown of IGF2BP2 inhibits colorectal cancer cell proliferation, migration and promotes tumor immunity by down-regulating MYC expression.
Tianyue LIU ; Chenying HAN ; Chenchen HU ; Siyi MAO ; Yuanjie SUN ; Shuya YANG ; Kun YANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(4):303-310
		                        		
		                        			
		                        			Objective To investigate the effect of insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) on the proliferation, migration and tumor immune microenvironment of colorectal cancer cells and its possible molecular mechanism. Methods The Cancer Genome Atlas (TCGA) database was used to analyze the expression levels of IGF2BP2 and MYC in colorectal cancer and adjacent tissues. The expression of IGF2BP2 in HCT-116 and SW480 human colorectal cancer cells was silenced by RNA interference (RNAi), and the silencing effect was detected by quantitative real-time PCR. After knocking down IGF2BP2, colony formation assay, CCK-8 assay and 5-ethynyl-2'-deoxyuridine (EdU) assay were employed to detect cell colony formation and proliferation ability. TranswellTM assay was used to detect cell migration ability. Quantitative real-time PCR was used to detect the mRNA expression of IGF2BP2, MYC, tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β) and interleukin-10 (IL-10). The protein expression of IGF2BP2 and MYC was detected by western blot. The binding ability of IGF2BP2 and MYC in HCT-116 cells was detected by quantitative real-time PCR after RNA immunoprecipitation. Results The results of TCGA database showed that the expression of IGF2BP2 and MYC in colorectal cancer tissues was significantly higher than that in adjacent tissues, and the survival time of colorectal cancer patients with high expression of IGF2BP2 was shorter. After silencing IGF2BP2, the viability, proliferation and migration of HCT-116 and SW480 cells were decreased. The mRNA expression of MYC, TGF-β and IL-10 in IGF2BP2 knockdown group was significantly decreased, while the expression of TNF-α mRNA was increased. The expression of MYC protein and the stability of MYC mRNA were significantly decreased. RIP-qPCR results showed that IGF2BP2 could bind to MYC mRNA. Conclusion Knockdown of IGF2BP2 inhibits colorectal cancer cell proliferation, migration and promotes tumor immunity by down-regulating MYC expression.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Movement/genetics*
		                        			;
		                        		
		                        			Cell Proliferation/genetics*
		                        			;
		                        		
		                        			Colorectal Neoplasms/metabolism*
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			Interleukin-10/metabolism*
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			RNA-Binding Proteins/metabolism*
		                        			;
		                        		
		                        			Transforming Growth Factor beta/genetics*
		                        			;
		                        		
		                        			Tumor Microenvironment/immunology*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-myc/metabolism*
		                        			
		                        		
		                        	
5.Protective effects of three kinds of borneol on different brain regions in acute cerebral ischemia/reperfusion model rats.
Dan-Ni LU ; Qian XIE ; Zhuo XU ; Jian-Mei YUAN ; Rong MA ; Jian WANG
China Journal of Chinese Materia Medica 2023;48(5):1289-1299
		                        		
		                        			
		                        			This study compared the ameliorating effects of L-borneol, natural borneol, and synthetic borneol on the injury of different brain regions in the rat model of acute phase of cerebral ischemia/reperfusion(I/R) for the first time, which provides a reference for guiding the rational application of borneol in the early treatment of ischemic stroke and has important academic and application values. Healthy specific pathogen-free(SPF)-grade SD male rats were randomly assigned into 13 groups: a sham-operation group, a model group, a Tween model group, a positive drug(nimodipine) group, and high-, medium-, and low-dose(0.2, 0.1, and 0.05 g·kg~(-1), respectively) groups of L-borneol, natural borneol, and synthetic borneol according to body weight. After 3 days of pre-administration, the rat model of I/R was established by suture-occluded method and confirmed by laser speckle imaging. The corresponding agents in different groups were then administered for 1 day. The body temperature was monitored regularly before pre-administration, days 1, 2, and 3 of pre-administration, 2 h after model awakening, and 1 d after model establishment. Neurological function was evaluated based on Zea-Longa score and modified neurological severity score(mNSS) 2 h and next day after awakening. The rats were anesthetized 30 min after the last administration, and blood was collected from the abdominal aorta. Enzyme-linked immunoassay assay(ELISA) was employed to determine the serum levels of tumor necrosis factor-alpha(TNF-α), interleukin-6(IL-6), IL-4, and transforming growth factor-beta1(TGF-β1). The brain tissues were stained with triphenyltetrazolium chloride(TTC) for the calculation of cerebral infarction rate, and hematoxylin-eosin(HE) staining was used for observing and semi-quantitatively evaluating the pathological damage in different brain regions. Immunohistochemistry was employed to detect the expression of ionized calcium binding adapter molecule 1(IBA1) in microglia. q-PCR was carried out to determine the mRNA levels of iNOS and arginase 1(Arg1), markers of polarization phenotype M1 and M2 in microglia. Compared with the sham-operation group, the model group and the Tween model group showed significantly elevated body temperature, Zea-Longa score, mNSS, and cerebral infarction rate, severely damaged cortex, hippocampus, and striatum, increased serum levels of IL-6 and TNF-α, and decreased serum levels of IL-4 and TGF-β1. The three borneol products had a tendency to reduce the body temperature of rats 1 day after modeling. Synthetic borneol at the doses of 0.2 and 0.05 g·kg~(-1), as well as L-borneol of 0.1 g·kg~(-1), significantly reduced Zea-Longa score and mNSS. The three borneol products at the dose of 0.2 g·kg~(-1) significantly reduced the cerebral infarction rate. L-borneol at the doses of 0.2 and 0.1 g·kg~(-1) and natural borneol at the dose of 0.1 g·kg~(-1) significantly reduced the pathological damage of the cortex. L-borneol and natural borneol at the dose of 0.1 g·kg~(-1) attenuated the pathological damage of hippocampus, and 0.2 g·kg~(-1) L-borneol attenuated the damage of striatum. The 0.2 g·kg~(-1) L-borneol and the three doses of natural borneol and synthetic borneol significantly reduced the serum level of TNF-α, and the 0.1 g·kg~(-1) synthetic borneol reduced the level of IL-6. L-borneol and synthetic borneol at the dose of 0.2 g·kg~(-1) significantly inhibited the activation of cortical microglia, and 0.2 g·kg~(-1) L-borneol up-regulated the expression of Arg1 and down-regulated the expression level of iNOS. In conclusion, the three borneol products may alleviate inflammation to ameliorate the pathological damage of brain regions of rats in the acute phase of I/R by inhibiting the activation of microglia and promoting the polarization of microglia from M1 type to M2 type. The protective effect on brain followed a trend of L-borneol > synthetic borneol > natural borneol. We suggest L-borneol the first choice for the treatment of I/R in the acute phase.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Transforming Growth Factor beta1/metabolism*
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			Interleukin-4/metabolism*
		                        			;
		                        		
		                        			Polysorbates
		                        			;
		                        		
		                        			Brain
		                        			;
		                        		
		                        			Brain Ischemia/metabolism*
		                        			;
		                        		
		                        			Reperfusion Injury/metabolism*
		                        			;
		                        		
		                        			Cerebral Infarction
		                        			;
		                        		
		                        			Reperfusion
		                        			
		                        		
		                        	
6.Effects of Nintedanib associated with Shenfu Injection on paraquat-induced lung injury in rats.
Hai Na LI ; Chang LIU ; Jin Zhua WANG ; Jia An SUN ; Chao LAN ; Ming Ke LIU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(2):81-86
		                        		
		                        			
		                        			Objective: To study the effects of Nintedanib associated with Shenfu Injection on lung injury induced by paraquat (PQ) intoxication. Methods: In September 2021, a total of 90 SD rats were divided into 5 groups in random, namely control group, PQ poisoning group, Shenfu Injection group, Nintedanib group and associated group, 18 rats in each group. Normal saline was given by gavage route to rats of control group, 20% PQ (80 mg/kg) was administered by gavage route to rats of other four groups. 6 hours after PQ gavage, Shenfu Injection group (12 ml/kg Shenfu Injection), Nintedanib group (60 mg/kg Nintedanib) and associated group (12 ml/kg Shenfu Injection and 60 mg/kg Nintedanib) were administered with medicine once a day. The levels of serum transforming growth factor beta1 (TGF-β1), interleukin-1 beta (IL-1β) were determined at 1, 3 and 7 d, respectively. The pathological changes of lung tissue, the ratio of wet weight and dry weight (W/D) of lung tissue, the levels of superoxide dismutase (SOD) and malondialdehyde (MDA) in lung tissue were observed and determined after 7 d. Western blot was used to analyse the expression levels of fibroblast growth factor receptor 1 (FGFR1), platelet derivation growth factor receptor alpha (PDGFRα), vascular endothelial growth factor receptor 2 (VEGFR2) in lung tissue after 7 d. Results: The levels of TGF-β1, IL-1β in all poisoning groups went up first and then went down. The levels of TGF-β1, IL-1β in associated group at 1, 3, 7 d were lower than that of PQ poisoning group, Shenfu Injection group and Nintedanib group at the same point (P<0.05). Pathological changes of lung tissue under the light microscopes showed that the degrees of hemorrhage, effusion and infiltration of inflammatory cells inside the alveolar space of Shenfu Injection group, Nintedanib group and associated group were milder than that of PQ poisoning group, and the midest in associated group. Compared with control group, the W/D of lung tissue was higher, the level of MDA in lung tissue was higher, while the level of SOD was lower, the expressions of FGFR1, PDGFRα and VEGFR2 in lung tissue were higher in PQ poisoning group (P<0.05). Compared with PQ poisoning group, Shenfu Injection group and Nintedanib group, the W/D of lung tissue was lower, the level of MDA in lung tissue was lower, while the level of SOD was higher, the expressions of FGFR1, PDGFRα and VEGFR2 in lung tissue were lower in associated group (P<0.05) . Conclusion: Nintedanib associated with Shenfu Injection can relieve lung injury of rats induced by PQ, which may be related to Nintedanib associated with Shenfu Injection can inhibit the activation of TGF-β1 and the expressions of FGFR1, PDGFRα, VEGFR2 in lung tissue of rats.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Paraquat
		                        			;
		                        		
		                        			Transforming Growth Factor beta1
		                        			;
		                        		
		                        			Receptor, Platelet-Derived Growth Factor alpha
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A
		                        			;
		                        		
		                        			Acute Lung Injury/drug therapy*
		                        			
		                        		
		                        	
7.Effect of pirfenidone on paraquat-induced pulmonary fibrosis in rats.
Yong Ji YAN ; Shuang LI ; Rui Min MA ; Ya Li FAN ; Jing MA ; Q YE
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(2):104-111
		                        		
		                        			
		                        			Objective: To construct paraquat (PQ) poisoning rat model and to explore the effect of pirfenidone (PFD) on PQ-induced pulmonary fibrosis. Methods: In April 2017, male 6-8 week-old Wistar rats were selected, and PQ was administered intraperitoneally at one time. PFD was administered by gavage 2 hours after poisoning. The daily gavage doses were 100, 200 and 300 mg/kg, and the rats were divided into physiological saline group, PQ group, PQ+PFD 100 group, PQ+PFD 200 group, PQ+PFD 300 group, with 10 rats in each group at each observation time point. The pathological changes of lung tissue at different time points (the 1st, 3rd, 7th, 14th, 28th, 42nd and 56th days) after poisoning and the effect of PFD intervention with different dose on PQ-induced pulmonary fibrosis were observed. Pathological evaluation of lung tissue was performed by Ashcroft scale method. The PQ+PFD 200 group was selected to further explore the pathological changes of lung tissue, the contents of hydroxyproline and malondialdehyde in lung tissue were determined.And the tumor necrosis factor (TNF) -α, interleukin (IL) -6, transforming growth factor (TGF) -β1, fibroblast growth factor (FGF) -B, platelet-derived growth factor (PDGF) -AB, insulin-like growth factor (IGF) -1 and PQ concentrations in serum and lung tissue were determined. Results: On the 1st to 7th day after PQ exposure, rats developed lung inflammation, which was aggravated on the 7th to 14th day, and pulmonary fibrosis appeared on the 14th to 56th day. Compared with PQ group, the Ashcroft scores of lung fibrosis in PQ+PFD 200 group and PQ+PDF 300 group decreased significantly in 7th and 28th day (P<0.05), while the Ashcroft score of lung fibrosis in PQ+PFD 100 group had no significant difference (P>0.05). After PQ exposure, the content of hydroxyproline in lung tissue increased gradually and reached the peak value on the 28th day. Compared with the PQ group, the contents of hydroxyproline in the PQ+PFD 200 group decreased at the 7th, 14th and 28th day, and the contents of malondialdehyde decreased at the 3rd and 7th day, the differences were statistically significant (P<0.05). The levels of TNF-α, IL-6 in rat serum and lung tissue reached the peak value on the 7th day after PQ exposure, and the levels of TGF-β1, FGF-B and IGF-1 in rat serum and lung tissue reached the peak value on the 14th day after PQ exposure, and the level of PDGF-AB in rat serum and lung tissue reached the peak value on the 28th day after PQ exposure. Compared with PQ group, the level of serum IL-6 in PQ+PFD 200 group decreased significantly on the 7th day, and serum TGF-β1, FGF-B, PDGF-AB and IGF-1 on the 14th and 28th day were decreased significantly (P<0.05). The levels of TNF-α, IL-6 in lung tissue of rats in PQ+PFD 200 group on the 7th day decreased significantly, and the levels of TGF-β1, FGF-B and IGF-1 in lung tissue of rats on the 14th day were significantly decreased, and the level of PDGF-AB in lung tissue of rats on the 28th day were significantly decreased (P<0.05) . Conclusion: PFD partially alleviates the PQ-induced lung inflammation and fibrosis by inhibiting oxidative stress, reducing the levels of pro-inflammatory and pro-fibrotic cytokines in serum and lung tissue, but does not affect the concentrations of PQ in serum and lung tissue.
		                        		
		                        		
		                        		
		                        			Male
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Pulmonary Fibrosis/chemically induced*
		                        			;
		                        		
		                        			Insulin-Like Growth Factor I
		                        			;
		                        		
		                        			Paraquat
		                        			;
		                        		
		                        			Transforming Growth Factor beta1
		                        			;
		                        		
		                        			Hydroxyproline
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			Rats, Wistar
		                        			;
		                        		
		                        			Malondialdehyde
		                        			
		                        		
		                        	
8.Role of PI3K/Akt/mTOR pathway-mediated macrophage autophagy in affecting the phenotype transformation of lung fibroblasts induced by silica dust exposure.
Yue DU ; Fangcai HUANG ; Lan GUAN ; Ming ZENG
Journal of Central South University(Medical Sciences) 2023;48(8):1152-1162
		                        		
		                        			OBJECTIVES:
		                        			The phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway is one of the main signaling pathways related to autophagy. Autophagy plays a key role in the formation of silicosis fibrosis. The phenotypic transformation of lung fibroblasts into myofibroblasts is a hallmark of the transition from the inflammatory phase to the fibrotic phase in silicosis. This study aims to investigate whether the PI3K/Akt/mTOR pathway affects the phenotypic transformation of silicosis-induced lung fibroblasts into myofibroblasts via mediating macrophage autophagy.
		                        		
		                        			METHODS:
		                        			The human monocytic leukemia cell line THP-1 cells were differentiated into macrophages by treating with 100 ng/mL of phorbol ester for 24 h. Macrophages were exposed to different concentrations (0, 25, 50, 100, 200, 400 μg/mL) and different times (0, 6, 12, 24, 48 h) of SiO2 dust suspension. The survival rate of macrophages was measured by cell counting kit-8 (CCK-8) method. Enzyme linked immunosorbent assay (ELISA) was used to measure the contents of transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α) in the cell supernatant. The co-culture system of macrophages and HFL-1 cells was established by transwell. A blank control group, a SiO2 group, a LY294002 group, a SC79 group, a LY294002+SiO2 group, and a SC79+SiO2 group were set up in this experiment. Macrophages in the LY294002+SiO2 group were pretreated with LY294002 (PI3K inhibitor) for 18 hours, and macrophages in the SC79+SiO2 group were pretreated with SC79 (Akt activator) for 24 hours, and then exposed to SiO2 (100 μg/mL) dust suspension for 12 hours. The expression of microtubule-associated protein 1 light chain 3 (LC3) protein in macrophages was detected by the immunofluorescence method. The protein expressions of PI3K, Akt, mTOR, Beclin-1, LC3 in macrophages, and collagen III (Col III), α-smooth muscle actin (α-SMA), fibronectin (FN), matrix metalloproteinase-1 (MMP-1), tissue metalloproteinase inhibitor-1 (TIMP-1) in HFL-1 cells were measured by Western blotting.
		                        		
		                        			RESULTS:
		                        			After the macrophages were exposed to SiO2 dust suspension of different concentrations for 12 h, the survival rates of macrophages were gradually decreased with the increase of SiO2 concentration. Compared with the 0 μg/mL group, the survival rates of macrophages in the 100, 200, and 400 μg/mL groups were significantly decreased, and the concentrations of TGF-β1 and TNF-α in the cell supernatant were obviously increased (all P<0.05). When 100 μg/mL SiO2 dust suspension was applied to macrophages, the survival rates of macrophages were decreased with the prolonged exposure time. Compared with the 0 h group, the survival rates of macrophages were significantly decreased (all P<0.05), the concentrations of TGF-β1 and TNF-α in the cell supernatant were significantly increased, and the protein expression levels of Beclin-1 and LC3II were increased markedly in the 6, 12, 24, and 48 h groups (all P<0.05). Immunofluorescence results demonstrated that after exposure to SiO2 (100 μg/mL) dust for 12 h, LC3 exhibited punctate aggregation and significantly higher fluorescence intensity compared to the blank control group (P<0.05). Compared with the blank control group, the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were up-regulated in the SiO2 group (all P<0.05). Compared with the SiO2 group, the protein expressions of PI3K, Akt, and mTOR were down-regulated and the protein expressions of LC3II and Beclin-1 were up-regulated in macrophages (all P<0.05), the contents of TNF-α and TGF-β1 in the cell supernatant were decreased (both P<0.01), and the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were down-regulated (all P<0.05) in the LY294002+SiO2 group. Compared with the SiO2 group, the protein expressions of PI3K, Akt, and mTOR were up-regulated and the protein expressions of LC3II and Beclin-1 were down-regulated in macrophages (all P<0.05), the contents of TNF-α and TGF-β1 in the cell supernatant were increased (both P<0.01), and the protein expressions of Col III, FN, α-SMA, MMP-1, and TIMP-1 in HFL-1 cells were up-regulated (all P<0.05) in the SC79+SiO2 group.
		                        		
		                        			CONCLUSIONS
		                        			Silica dust exposure inhibits the PI3K/Akt/mTOR pathway, increases autophagy and concentration of inflammatory factors in macrophages, and promotes the phenotype transformation of HFL-1 cells into myofibroblasts. The regulation of the PI3K/Akt/mTOR pathway can affect the autophagy induction and the concentration of inflammatory factors of macrophages by silica dust exposure, and then affect the phenotype transformation of HFL-1 cells into myofibroblasts induced by silica dust exposure.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Transforming Growth Factor beta1/metabolism*
		                        			;
		                        		
		                        			Silicon Dioxide/metabolism*
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			Matrix Metalloproteinase 1/metabolism*
		                        			;
		                        		
		                        			Tissue Inhibitor of Metalloproteinase-1
		                        			;
		                        		
		                        			Sirolimus
		                        			;
		                        		
		                        			Beclin-1/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Dust
		                        			;
		                        		
		                        			TOR Serine-Threonine Kinases/metabolism*
		                        			;
		                        		
		                        			Lung/metabolism*
		                        			;
		                        		
		                        			Fibroblasts/metabolism*
		                        			;
		                        		
		                        			Silicosis/metabolism*
		                        			;
		                        		
		                        			Macrophages/metabolism*
		                        			;
		                        		
		                        			Autophagy
		                        			
		                        		
		                        	
9.Therapeutic effect of Jingfang Granules on CCl_4-induced liver fibrosis in mice and its mechanism.
Yu-Ru LI ; Ya-Fang ZHAO ; Guo-Liang CHENG ; En-Li WANG ; Yu-Jun TAN ; Jing-Chun YAO ; Yan ZHAO ; Gui-Min ZHANG
China Journal of Chinese Materia Medica 2022;47(22):6127-6136
		                        		
		                        			
		                        			To investigate the therapeutic effect of Jingfang Granules on carbon tetrachloride(CCl_4)-induced liver fibrosis in mice and its mechanism. Forty-nine 8-week-old male C57 BL/6 J mice were randomly divided into a blank group, a CCl_4 group, a silybin group(positive control, 100 mg·kg~(-1))+CCl_4, a Jingfang high-dose(16 g·kg~(-1)) group, a Jingfang high-dose(16 g·kg~(-1))+CCl_4 group, a Jingfang medium-dose(8 g·kg~(-1))+CCl_4 group, and a Jingfang low-dose(4 g·kg~(-1))+CCl_4 group, with 7 mice in each group. The mice in the blank group and Jingfang high-dose group were intraperitoneally injected olive oil solution, and mice in other groups were intraperitoneally injected with 10% CCl_4 olive oil solution(5 mL·kg~(-1)) to induce liver fibrosis, twice a week with an interval of 3 d, for 8 weeks. At the same time, except for the blank group and CCl_4 group, which were given deionized water, the mice in other groups were given the corresponding dose of drugs by gavage once daily for 8 weeks with the gavage volume of 10 mL·kg~(-1). All mice were fasted and freely drank for 12 h after the last administration, and then the eyeballs were removed for blood collection. The liver and spleen were collected, and the organ index was calculated. The levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), total bile acid(TBA), and triglyceride(TG) in the serum of mice were detected by an automated analyzer. Tumor necrosis factor-α(TNF-α), interleukin-6(IL-6) and interleukin-1β(IL-1β) levels were detected by enzyme-linked immunosorbent assay(ELISA). Kits were used to detect the contents of superoxide dismutase(SOD), malondialdehyde(MDA), and glutathione(GSH) in the liver tissue. Pathological changes in the liver tissue were observed by hematoxylin-eosin(HE), Masson, and Sirius red staining. Western blot was used to detect protein expressions of transforming growth factor-β(TGF-β), α-smooth muscle actin(α-SMA) and Smad4 in the liver tissue. The results indicated that Jingfang Granules significantly reduced the organ index, levels of ALT, AST, TBA,TG, TNF-α, IL-6, and IL-1β in the serum, and the content of MDA in the liver tissue of mice with CCl_4-induced liver fibrosis. Jingfang Granules also significantly increased the content of SOD and GSH in the liver tissue. Meanwhile, Jingfang Granules down-regulated the protein levels of TGF-β, α-SMA, and Smad4. Furthermore, Jingfang Granules had no significant effect on the liver tissue morphology and the above indexes in the normal mice. In conclusion, Jingfang Granules has obvious therapeutic effect on CCl_4-induced liver fibrosis, and its mechanism may be related to reducing the expression of pro-inflammatory factors, anti-oxidation, and regulating TGF-β/Smad4 signaling pathway.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			Olive Oil/therapeutic use*
		                        			;
		                        		
		                        			Carbon Tetrachloride/metabolism*
		                        			;
		                        		
		                        			Liver Cirrhosis/metabolism*
		                        			;
		                        		
		                        			Liver
		                        			;
		                        		
		                        			Superoxide Dismutase/metabolism*
		                        			;
		                        		
		                        			Transforming Growth Factor beta/metabolism*
		                        			
		                        		
		                        	
10.Pirfenidone alleviates urethral stricture following urethral injury in rats by suppressing TGF-β1 signaling and inflammatory response.
Zhong LI ; Xu HUANG ; Shou Feng CHEN ; Zhi Jian ZHANG ; Xin LIANG ; Hai Hui LI ; Lei QIN ; Yuan Yuan GUO
Journal of Southern Medical University 2022;42(3):411-417
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effect of pirfenidone for reducing urethral stricture following urethral injury in rats and explore the possible mechanism.
		                        		
		                        			METHODS:
		                        			Thirty male SD rats were randomly assigned into negative control group, positive control group and pirfenidone group (n=10). In pirfenidone and positive control groups, the rats were subjected to incision of the posterior urethral cavernous body followed by daily intraperitoneal injection of pirfenidone (100 mg/kg) and an equivalent volume of solvent, respectively. The rats in the negative control group were given intraperitoneal injections of solvent without urethral injury. At two weeks after modeling, retrograde urethrography was performed for observing urethral stricture, and the injured urethral tissues were harvested for HE staining, Masson staining, immunohistochemical staining and Western blotting for detecting the protein expressions of α-SMA and TGF-β1. The mRNA expressions of the inflammatory factors TNF-α, IL-6, and IL-1β were detected using qRT-PCR.
		                        		
		                        			RESULTS:
		                        			The body weight of the rats in pirfenidone group was significantly decreased compared with that in the other two groups (P < 0.05). Retrograde urethrography showed significant narrowing of the urethra in the positive control group but not in the pirfenidone group. HE staining of the injured urethral tissues showed obvious proliferation of urethral epithelial cells with narrow urethral cavity and increased inflammatory cells in positive control group. The pathological findings of the urethra were similar between pirfenidone group and the negative control group. Masson staining revealed obviously reduced collagen fibers and regular arrangement of the fibers in pirfenidone group as compared to the positive control group. Compared with those in the negative control group, the expressions of α-SMA and TGF-β1 were significantly increased in the positive control group, and pirfenidone treatment significantly inhibited their expressions (P < 0.05 or 0.01). Pirfenidone also significantly inhibited the mRNA expressions of TNF-α, IL-6, and IL-1β in the injured urethral tissue (P < 0.05 or 0.01).
		                        		
		                        			CONCLUSION
		                        			Pirfenidone can prevent urethral fibrosis and stricture after urethral injury possibly by inhibiting the TGF-β1 pathway and inflammatory response.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Pyridones/pharmacology*
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Solvents
		                        			;
		                        		
		                        			Transforming Growth Factor beta1/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Urethral Stricture/pathology*
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail