1.Hepcidin-orchestrated Hemogram and Iron Homeostatic Patterns in Two Models of Subchronic Hepatic injury.
Ibtsam GHEITH ; Abubakr EL-MAHMOUDY
Biomedical and Environmental Sciences 2019;32(3):153-161
OBJECTIVE:
This study was designed to evaluate hematological disorders and the orchestrating roles of hepcidin and IL-6 in rat models of thioacetamide (TAA) and carbon tetrachloride (CCl4) hepatotoxicity.
METHODS:
Rats were intraperitoneally injected with TAA (10 mg/100 g rat weight dissolved in isosaline) or CCl4 (100 μL/100 g rat weight diluted as 1:4 in corn oil) twice weekly for eight consecutive weeks to induce subchronic liver fibrosis. Blood and tissue samples were collected and analyzed.
RESULTS:
CCl4 but not TAA significantly decreased the RBCs, Hb, PCV, and MCV values with minimal alterations in other erythrocytic indices. Both hepatotoxins showed leukocytosis, granulocytosis, and thrombocytopenia. By the end of the experiment, the erythropoietin level increased in the CCl4 model. The serum iron, UIBC, TIBC, transferrin saturation%, and serum transferrin concentration values significantly decreased, whereas that of ferritin increased in the CCl4 model. TAA increased the iron parameters toward iron overload. RT-PCR analysis revealed increased expression of hepatic hepcidin and IL-6 mRNAs in the CCl4 model and suppressed hepcidin expression without significant effect on IL-6 in the TAA model.
CONCLUSION
These data suggest differences driven by hepcidin and IL-6 expression between CCl4 and TAA liver fibrosis models and are of clinical importance for diagnosis and therapeutics of liver diseases.
Animals
;
Blood Chemical Analysis
;
Carbon Tetrachloride
;
toxicity
;
Hepcidins
;
pharmacology
;
Injections, Intraperitoneal
;
Interleukin-6
;
pharmacology
;
Iron
;
blood
;
metabolism
;
Leukocytosis
;
chemically induced
;
therapy
;
Liver Cirrhosis
;
chemically induced
;
therapy
;
Male
;
Rats
;
Thioacetamide
;
toxicity
;
Thrombocytopenia
;
chemically induced
;
therapy
;
Transferrin
;
metabolism
2.Progress on anti-tumor molecular mechanisms of dihydroartemisinin.
Peng CAO ; Dongjin LENG ; Ying LI ; Ziwei ZHANG ; Lei LIU ; Xiaoyan LI
Journal of Zhejiang University. Medical sciences 2016;45(5):501-507
Artemisinin is an anti-malarial drug with poor water solubility and oral absorption; so a variety of derivatives based on the parent nucleus have been developed. Compared with artemisinin, dihydroartemisinin (DHA) has a stronger anti-malaria activity, and has the advantages of high metabolic rate and better water solubility. Recent studies have discovered that DHA has a good inhibitory effect on tumor cells, which is closely related to the peroxide bridge in its molecular structure. Since tumor cells need more Fethan normal cells, there are a large number of transferrin receptors on the tumor cell membrane. DHA can break the peroxide bridge in the presence of Fe, and the free radicals generated can play its lethal effect on tumor cells. In addition, DHA can promote endocytosis of transferrin receptor, and thus prevent cancer cells from taking Fefrom microenvironment. This article reviews the anti-tumor molecular mechanism of DHA, including accelerating oxidative damage, inducing apoptosis, inhibiting the growth, proliferation and invasion of tumor cells, reversing tumor multidrug resistance.
Antigens, CD
;
drug effects
;
metabolism
;
Antineoplastic Agents
;
pharmacokinetics
;
pharmacology
;
Apoptosis
;
drug effects
;
Artemisinins
;
metabolism
;
pharmacokinetics
;
pharmacology
;
Endocytosis
;
drug effects
;
Free Radicals
;
chemical synthesis
;
pharmacology
;
Humans
;
Iron
;
metabolism
;
Neoplasms
;
drug therapy
;
physiopathology
;
Oxidative Stress
;
drug effects
;
Receptors, Transferrin
;
drug effects
;
metabolism
3.A Chinese herbal formula, Wuzi Yanzong pill, improves spermatogenesis by modulating the secretory function of Sertoli cells.
Ya-ping XU ; Bao-xing LIU ; Xiu-ping ZHANG ; Chao-wei YANG ; Chuan-hang WANG
Chinese journal of integrative medicine 2014;20(3):194-199
OBJECTIVETo evaluate the effects of the Chinese herbal formula Wuzi Yanzong Pill (, WYP) on the spermatogenesis and specific secretory functions of Sertoli cells in rat model and to investigate the underlying mechanism.
METHODSFive groups of male Sprague-Dawley rats including the control group, the model group, the low-dose WYP group, the medium-dose WYP group and the high-dose WYP group (5 in each group) were treated daily with vehicle, multiglycosides of Tripterygium wilfordii Hook f (GTW) either alone (20 mg/kg) or followed by WYP (0.5, 1.0, or 2.0 g/kg daily), respectively for 30 days. Serum levels of follicle-stimulating hormone (FSH), inhibin B (INHB) and testosterone (T) were evaluated using enzyme-linked immunosorbent assay. Androgen-binding protein (ABP) gene expression and transferrin (TF) protein expression in testis tissue specimens of all rats were determined using real-time reverse transcriptase polymerase chain reaction and Western blotting analysis, respectively. Histopathological alterations in the testis were determined using Johnsen's score.
RESULTSThe toxicity of GTW towards Sertoli cell secretory functions and spermatogenesis was accompanied by increased serum FSH concentrations and decreased INHB and T concentrations. Upregulated ABP mRNA levels, and decreased TF protein expression and Johnsen's scores were detected in the model group compared with the control group P<0.05 or P<0.01). Oral high-dose WYP administrations to GTW-treated rats effectively alleviated all of the GTW-induced changes in specific secretory functions of Sertoli cells (ABP, INHB and TF). Furthermore, serum T level and Johnsen's score of the testis increased greatly compared with the model group (P<0.01).
CONCLUSIONWYP has the ability to improve the spermatogenesis, possibly through modulating the secretory proteins expression of Sertoli cells.
Androgen-Binding Protein ; genetics ; metabolism ; Animals ; Blotting, Western ; Drugs, Chinese Herbal ; pharmacology ; Follicle Stimulating Hormone ; blood ; Gene Expression Regulation ; drug effects ; Inhibins ; blood ; Male ; RNA, Messenger ; genetics ; metabolism ; Rats ; Rats, Sprague-Dawley ; Sertoli Cells ; drug effects ; secretion ; Spermatogenesis ; drug effects ; Tablets ; Testis ; cytology ; metabolism ; Testosterone ; blood ; Transferrin ; metabolism
4.Holotransferrin enhances selective anticancer activity of artemisinin against human hepatocellular carcinoma cells.
Xiao-rong DENG ; Zhao-xia LIU ; Feng LIU ; Lei PAN ; He-ping YU ; Jin-ping JIANG ; Jian-jun ZHANG ; Li LIU ; Jun YU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(6):862-865
Artemisinin, also termed qinghaosu, is extracted from the traditional Chinese medicine artemesia annua L. (the blue-green herb) in the early 1970s, which has been confirmed for effectively treating malaria. Additionally, emerging data prove that artemisinin exhibits anti-cancer effects against many types of cancers such as leukemia, melanoma, etc. Artemisinin becomes cytotoxic in the presence of ferrous iron. Since iron influx is high in cancer cells, artemisinin and its analogs selectively kill cancer cells with increased intracellular iron concentrations. This study is aimed to investigate the selective inhibitory effects of artemisinin on SMMC-7721 cells in vitro and determine the effect of holotransferrin, which increases the concentration of ferrous iron in cancer cells, combined with artemisinin on the anticancer activity. MTT assay was used for assessing the proliferation of SMMC-7721 cells treated with artemisinin. The induction of apoptosis and inhibition of colony formation in SMMC-7721 cells treated with artemisinin were determined by TdT-mediated dUTP nick end labeling (TUNEL) and colony formation assay, respectively. The results showed that artemisinin at various concentrations significantly inhibited growth, colony formation and cell viability of SMMC-7721 cells (P<0.05), likely due to induction of apoptosis of SMMC-7721 cells. Of interest, it was found that incubation of artemisinin combined with holotransferrin sensitized the growth inhibitory effect of artemisinin on SMMC-7721 cells (P<0.01). Our data suggest that treatment with artemisinin leads to inhibition of viability and proliferation, and apoptosis of SMMC-7721 cells. Furthermore, we observed that holotransferrin significantly enhanced the anti-cancer activity of artemisinin. This study may provide a potential therapeutic choice for liver cancer.
Antineoplastic Agents
;
pharmacology
;
Apoptosis
;
drug effects
;
Artemisinins
;
pharmacology
;
Carcinoma, Hepatocellular
;
metabolism
;
Cell Line, Tumor
;
Drug Synergism
;
Humans
;
Liver Neoplasms
;
metabolism
;
Transferrin
;
pharmacology
5.Differentiation of human labia minora dermis-derived fibroblasts into insulin-producing cells.
Bona KIM ; Byung Sun YOON ; Jai Hee MOON ; Jonggun KIM ; Eun Kyoung JUN ; Jung Han LEE ; Jun Sung KIM ; Cheong Soon BAIK ; Aeree KIM ; Kwang Youn WHANG ; Seungkwon YOU
Experimental & Molecular Medicine 2012;44(1):26-35
Recent evidence has suggested that human skin fibroblasts may represent a novel source of therapeutic stem cells. In this study, we report a 3-stage method to induce the differentiation of skin fibroblasts into insulin-producing cells (IPCs). In stage 1, we establish the isolation, expansion and characterization of mesenchymal stem cells from human labia minora dermis-derived fibroblasts (hLMDFs) (stage 1: MSC expansion). hLMDFs express the typical mesenchymal stem cell marker proteins and can differentiate into adipocytes, osteoblasts, chondrocytes or muscle cells. In stage 2, DMEM/F12 serum-free medium with ITS mix (insulin, transferrin, and selenite) is used to induce differentiation of hLMDFs into endoderm-like cells, as determined by the expression of the endoderm markers Sox17, Foxa2, and PDX1 (stage 2: mesenchymal-endoderm transition). In stage 3, cells in the mesenchymal-endoderm transition stage are treated with nicotinamide in order to further differentiate into self-assembled, 3-dimensional islet cell-like clusters that express multiple genes related to pancreatic beta-cell development and function (stage 3: IPC). We also found that the transplantation of IPCs can normalize blood glucose levels and rescue glucose homeostasis in streptozotocin-induced diabetic mice. These results indicate that hLMDFs have the capacity to differentiate into functionally competent IPCs and represent a potential cell-based treatment for diabetes mellitus.
Animals
;
Biological Markers/metabolism
;
*Cell Culture Techniques
;
*Cell Differentiation
;
Cell Proliferation/drug effects
;
Cell Separation
;
Cells, Cultured
;
Dermis/*cytology/drug effects
;
Diabetes Mellitus, Experimental/*surgery
;
Female
;
Fibroblasts/*cytology/drug effects
;
Genitalia, Female/*cytology
;
Glucose/metabolism
;
Hepatocyte Nuclear Factor 3-beta/metabolism
;
Homeodomain Proteins/metabolism
;
Humans
;
Insulin/pharmacology/secretion
;
Insulin-Secreting Cells/*cytology/metabolism
;
*Islets of Langerhans Transplantation
;
Mesenchymal Stem Cells/*cytology/drug effects/metabolism
;
Mice
;
Mice, Nude
;
Niacinamide/pharmacology
;
Recovery of Function
;
SOXF Transcription Factors/metabolism
;
Sodium Selenite/pharmacology
;
Trans-Activators/metabolism
;
Transferrin/pharmacology
6.Serum-free medium for suspension culture of recombinant Chinese hamster ovary (11G-S) cells.
Xingmao LIU ; Hong LIU ; Lingling YE ; Shichong LI ; Benchuan WU ; Haitao WANG ; Jing XIE ; Zhaolie CHEN
Chinese Journal of Biotechnology 2010;26(8):1116-1122
With suspension adapted recombinant Chinese hamster ovary (CHO) cell lines 11G-S expressing human pro-urokinase (pro-UK) as the object of study, a serum-free medium for the cultivation of recombinant CHO cells in suspension was formulated by using Plackett-Burman design and response surface methodology. The two-level Plackett-Burman design was used to evaluate the effect of 10 medium supplements on the growth of the 11G-S cells in suspension culture. Among the 10 medium supplements, insulin, transferrin, and putrescine were identified as the most significant factors (P < 0.05). The response surface methodology with three factors and three levels was used to determine the optimal levels of these factors. And a serum-free medium, SFM-CHO-S for recombinant CHO cells suspension culture was formulated. The maximum cell density of 11G-S cells in SFM-CHO-S in suspension batch culture reached 4.12 x 10(6) cells/mL with a maximum pro-UK activity at 5614 IU/mL, which was superior to the commercial serum-free medium for recombinant CHO cells.
Animals
;
CHO Cells
;
Cell Culture Techniques
;
methods
;
Cricetinae
;
Cricetulus
;
Culture Media, Serum-Free
;
Genetic Engineering
;
Insulin
;
pharmacology
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Transferrin
;
pharmacology
;
Urokinase-Type Plasminogen Activator
;
biosynthesis
;
genetics
7.Advancement of the study on iron metabolism and regulation in tumor cells.
Shu-Jun WANG ; Chong GAO ; Bao-An CHEN
Chinese Journal of Cancer 2010;29(4):451-455
As an essential metal for sustaining life, iron is involved in a number of metabolic processes, including DNA synthesis, electron transport, oxygen delivery, and so on. Iron metabolism involves the absorption, transport, and use of iron and is strictly regulated. Numerous studies have found a positive correlation between iron storage and the risk of tumors, such as colorectal carcinoma, hepatic cancer, renal carcinoma, lung cancer, and gastric cancer. In tumor cells, iron metabolism changes by several mechanisms, such as regulating the growth of tumor cells by transferrin, accelerating the uptake of iron by the overexpressions of transferrin receptors 1 and 2 (TfR1 and TfR2), synthesizing or secreting ferritin by some malignant tumor cells, and upregulating the level of hepcidin in patients with cancer. Some advances on diagnosis and treatment based on iron metabolism have been achieved, such as increasing the transfection and target efficiency of transferrin-polyethylenimine (PEI), inducing cell apoptosis by beta-guttiferin through interacting with TfR1.
Animals
;
Antibiotics, Antineoplastic
;
pharmacology
;
Antigens, CD
;
genetics
;
metabolism
;
Antimicrobial Cationic Peptides
;
biosynthesis
;
genetics
;
Apoptosis
;
Cell Proliferation
;
Doxorubicin
;
pharmacology
;
Ferritins
;
metabolism
;
physiology
;
Hepcidins
;
Humans
;
Interleukin-18
;
pharmacology
;
Iron
;
metabolism
;
physiology
;
Neoplasms
;
metabolism
;
pathology
;
RNA, Messenger
;
metabolism
;
Receptors, Transferrin
;
genetics
;
metabolism
;
Transferrin
;
metabolism
;
physiology
;
Tumor Suppressor Protein p53
;
pharmacology
8.Antitumor mechanism of Qinghaosu derivatives--molecular docking studies of Qinghaosu derivatives with transferrin.
Nai-Fang LIU ; Ling-Bo QU ; Bing-Ren XIANG ; Ran YANG
Acta Pharmaceutica Sinica 2009;44(2):140-144
To investigate the antitumor mechanism of artemisninin, a flexible docking analysis was used to score all kinds of functions of 11 Qinghaosu derivatives and transferrin with different resolutions. The distances of Asp-63, Tyr-188, His-249, Arg-124 and Lys-296 with Qinghaosu were less than 0.5 nm, separately. Meanwhile, the higher is the activity of Qinghaosu derivatives the higher is the score. Our model explains that Fe2+ is more feasible to react with Qinghaosu, and not involved in other metabolism in presence of transferrin. Docking results unveil that Iron(II)-transferrin increased the cytotoxicity of Qinghaosu derivatives and provide a rational basis for further design and synthesis of novel Qinghaosu derivatives.
Antineoplastic Agents, Phytogenic
;
chemical synthesis
;
chemistry
;
pharmacology
;
Artemisinins
;
chemical synthesis
;
chemistry
;
pharmacology
;
Catalytic Domain
;
Drug Discovery
;
Models, Chemical
;
Molecular Structure
;
Protein Binding
;
Transferrin
;
chemistry
9.Effect of Iron-Chelator Deferiprone on the In Vitro Growth of Staphylococci.
Choon Mee KIM ; Sung Heui SHIN
Journal of Korean Medical Science 2009;24(2):289-295
The standard iron-chelator deferoxamine is known to prevent the growth of coagulase-negative staphylococci (CoNS) which are major pathogens in iron-overloaded patients. However, we found that deferoxamine rather promotes the growth of coagulase-positive Staphylococcus aureus. Accordingly, we tested whether deferiprone, a new clinically-available iron-chelator, can prevent the growth of S. aureus strains as well as CoNS. Deferiprone did not at least promote the growth of all S. aureus strains (n=26) and CoNS (n=27) at relatively low doses; moreover, it could significantly inhibit the growth of all staphylococci on non-transferrin-bound-iron and the growth of all CoNS on transferrin-bound iron at relatively high doses. At the same doses, it did not at least promote the growth of all S. aureus strains on transferrin-bound-iron. These findings indicate that deferiprone can be useful to prevent staphylococcal infections, as well as to improve iron overload, in iron-overloaded patients.
Deferoxamine/pharmacology
;
Humans
;
Iron/metabolism
;
Iron Chelating Agents/*pharmacology
;
Iron Overload/metabolism
;
Microbial Sensitivity Tests
;
Pyridones/*pharmacology
;
Staphylococcus/*drug effects/growth & development
;
Staphylococcus aureus/drug effects/growth & development
;
Transferrin/metabolism
10.Effects of red clover extract on the activation and proliferation of mouse T lymphocytes and the NO secretion of mouse macrophages.
Zhi YANG ; Xiu-yan HUANG ; Yao-ying ZENG
Acta Pharmaceutica Sinica 2008;43(10):1019-1024
The study investigated the effects of red clover extract (RCE) on mouse T macrophages and lymphocytes in vitro. The cell toxic effect of RCE was estimated by MTT assay. Multiple-fluorescence staining plus flow cytometry were used to detect the effect of RCE on CD69/CD25/CD71 expression of mouse T lymphocytes stimulated by Con A; CFDA-SE staining plus flow cytometry were used to analyze the effect of RCE on proliferation of T lymphocytes activated by Con A; The effect of RCE on nitric oxide (NO) secretion of mouse macrophages stimulated by lipopolysaccharide (LPS) for 24 h was assayed by Griess reagent system. We found that RCE had potent anti-inflammatory effects on mice. RCE had little cell toxic effect on mouse lymphocytes and macrophages. RCE strongly inhibited the excessive production of inflammatory mediators (NO, CD69, CD25, CD71), in a dose-dependent manner, like cyclosporine A injection. RCE could inhibit proliferation of CD3+ T lymphocytes. These data suggested that RCE might exhibit anti-inflammatory effect by inhibiting the activation and proliferation of mouse lymphocytes and the NO secretion of mouse macrophages.
Animals
;
Anti-Inflammatory Agents
;
isolation & purification
;
pharmacology
;
Antigens, CD
;
metabolism
;
Antigens, Differentiation, T-Lymphocyte
;
metabolism
;
CD3 Complex
;
analysis
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Drugs, Chinese Herbal
;
isolation & purification
;
pharmacology
;
Interleukin-2 Receptor alpha Subunit
;
metabolism
;
Lectins, C-Type
;
Lymphocyte Activation
;
drug effects
;
Macrophages
;
cytology
;
secretion
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Nitric Oxide
;
secretion
;
Plants, Medicinal
;
chemistry
;
Receptors, Transferrin
;
metabolism
;
T-Lymphocytes
;
cytology
;
drug effects
;
metabolism
;
Trifolium
;
chemistry

Result Analysis
Print
Save
E-mail