1.Impact of elevated arterial blood pressure on bioprosthetic valve calcification and failure after transcatheter aortic valve replacement.
Wenjing SHENG ; Qifeng ZHU ; Hanyi DAI ; Dao ZHOU ; Xianbao LIU
Journal of Zhejiang University. Medical sciences 2025;54(2):154-160
Transcatheter aortic valve replacement (TAVR) has emerged as the standard treatment for severe aortic stenosis, demonstrating comparable efficacy to traditional surgery in low and intermediate-risk patients. However, the bioprosthetic valves utilized in TAVR have a limited lifespan, and bioprosthetic valve failure, including calcification, rupture or infection may develop, leading to poor clinical outcomes. Elevated blood pressure has been identified as a key factor in aortic valve calcification, and its role in bioprosthetic valve failure is gaining increasing attention. Hypertension may accelerate the calcification process and exacerbate valve failure due to increased mechanical stress on the valve, activation of the renin-angiotensin system, and enhanced thrombus formation. Furthermore, elevated blood pressure interacts with prosthesis mismatch and paravalvular leak, jointly affecting valve durability. This review explores the impact of elevated blood pressure on bioprosthetic valve calcification and failure after TAVR, and emphasizes the importance of blood pressure control, optimized preoperative assessment, and appropriate valve selection in reducing valve failures.
Humans
;
Transcatheter Aortic Valve Replacement/adverse effects*
;
Calcinosis/etiology*
;
Bioprosthesis
;
Heart Valve Prosthesis/adverse effects*
;
Prosthesis Failure
;
Aortic Valve Stenosis/surgery*
;
Aortic Valve/surgery*
;
Hypertension/physiopathology*
2.Left bundle branch pacing in a patient with decreased cardiac function after transcatheter aortic valve replacement.
Xinghong LI ; Jubo JIANG ; Sheng'an SU ; Fang ZHOU
Journal of Zhejiang University. Medical sciences 2025;54(2):149-153
A case of an elderly patient with severe aortic insufficiency who carried high risks for surgical valve replacement. After a detailed preoperative evaluation, the patient successfully received transapical transcatheter aortic valve replacement. Postoperatively, complete left bundle branch block developed, resulting in impaired left ventricular function. Despite guideline-directed medical therapy for heart failure, cardiac function showed no significant recovery. At 4.5 months post-surgery, left bundle branch pacing was performed, leading to a marked improvement in cardiac function.
Aged
;
Humans
;
Male
;
Aortic Valve Insufficiency/surgery*
;
Bundle-Branch Block/etiology*
;
Cardiac Pacing, Artificial
;
Postoperative Complications/therapy*
;
Transcatheter Aortic Valve Replacement/adverse effects*
3.Advances in stroke after transcatheter aortic valve replacement.
Journal of Zhejiang University. Medical sciences 2025;54(2):167-174
With the clinical generalization and popularization of transcatheter aortic valve replacement (TAVR), cerebrovascular events related to TAVR occur more frequently, which significantly impairs neurocognitive function, increases mortality, and seriously affects prognosis and quality of life in these patients. However, the reported incidence rates of TAVR-related stroke differ in literature due to inconsistent diagnostic criteria. According to the onset time, TAVR-related stroke can be divided into acute (≤24 h), subacute (24 h-30 d), early (31 d-1 year) and late (>1 year) types, and the cause of stroke generally varies according to the onset time. Both surgical (balloon aortic valvuloplasty, types of transcatheter heart valve, alternative access) and non-surgical (valvular calcium burden, bicuspid aortic valve, subclinical leaflet thrombosis, postoperative new-onset atrial fibrillation) can be related to the occurrence of TAVR-related stroke. Postprocedural monitoring, postprocedural antithrombotic therapy, and cerebral embolic protection devices are important for the prevention of TAVR-related stoke. This article reviews the research progress on TAVR-related stroke, focusing on its epidemiology, risk factors and preventive measures, aiming to provide reference for the clinical management of stroke in TAVR.
Humans
;
Transcatheter Aortic Valve Replacement/adverse effects*
;
Stroke/epidemiology*
;
Postoperative Complications/etiology*
;
Aortic Valve Stenosis/surgery*
;
Risk Factors
4.Structural valve deterioration after transcatheter aortic valve replacement: a research update.
Mengyun YAN ; Zhengang ZHAO ; Mao CHEN
Journal of Zhejiang University. Medical sciences 2025;54(2):183-190
Structural valve deterioration (SVD) refers to intrinsic and irreversible pathological changes in the components of prosthetic heart valves, manifesting as fibrosis, calcification, wear and tear, loosening, as well as strut fracture or deformation of the valve framework. These changes ultimately lead to valve stenosis and/or regurgitation.The mechanisms may be related to mechanical stress, immune response and abnormal calcium-phosphorus metabolism. Studies have shown that risk factors for SVD include patient factors (such as age, underlying cardiovascular disease and comorbidities), valve factors (such as material properties, processing techniques, and valve type), and surgical factors (such as valve injury, suboptimal stent expansion, and irregular stent release morphology). Clinical imaging assessment of SVD demonstrates complementary advantages among echocardiography, multi-detector spiral CT and cardiac magnetic resonance imaging, with distinct diagnostic objectives. The primary management strategies for SVD after trans-catheter aortic valve replacement (TAVR) include drug therapy, redo-TAVR, surgical aortic valve replacement (SAVR) and the novel SURPLUS technique. Among them, redo-TAVR has become a common method because of its minimally invasive nature, but it is still necessary to further clarify the patient indications and optimize the surgical strategy. SAVR is reserved for young, low-risk patients; SURPLUS combines the advantages of SAVR and TAVR, making it suitable for cases where redo-TAVR is unfeasible or contraindicated, while the risk of SAVR is excessively high. This article reviews the latest progress of SVD following TAVR treatment to provide reference for research into the durability of bioprosthetic valve and clinical intervention of SVD.
Humans
;
Transcatheter Aortic Valve Replacement/adverse effects*
;
Heart Valve Prosthesis/adverse effects*
;
Prosthesis Failure
;
Aortic Valve/pathology*
;
Aortic Valve Stenosis/surgery*
5.Clinical efficacy and safety of transcatheter aortic valve replacement for patients with severe pure native aortic regurgitation.
Jiantao CHEN ; Yi ZHANG ; Kangni FENG ; Suiqing HUANG ; Hanri XIAO ; Mengya LIANG ; Zhongkai WU
Journal of Zhejiang University. Medical sciences 2025;54(4):529-540
OBJECTIVES:
To evaluate the early clinical efficacy and safety of trans-catheter aortic valve replacement (TAVR) for patients with severe pure native aortic regurgitation (PNAR) who are not suitable for conventional surgical aortic valve replace-ment.
METHODS:
A retrospective analysis was conducted on 48 patients with PNAR who underwent TAVR at the Department of Cardiac Surgery, the First Affiliated Hospital of Sun Yat-sen University between March 2019 and February 2025. These included 25 cases with transfemoral approach (TF-TAVR group) and 23 cases with transapical approach (TA-TAVR group). Efficacy and safety were assessed by analyzing baseline characteristics, all-cause mortality, and procedure-related complications.
RESULTS:
Compared with the TA-TAVR group, the TF-TAVR group exhibited significantly smaller aortic annulus circumference and diameter, left ventricular outflow tract circumference and diameter, diameters of the left, right, and non-coronary sinuses, and sinotubular junction (STJ) diameter, along with a shorter distance from the STJ to the aortic annular plane ring plane, a smaller annulus angle (all P<0.05). Additionally, the TF-TAVR group showed a deeper prosthesis implantation depth relative to the aortic annular plane (P<0.01). The overall technical success rate was 91.67%, and the device success rate was 83.33%. Post-TAVR, both groups demonstrated significant improvement in left ventricular end-diastolic diameter (both P<0.05), while only the TA-TAVR group showed significant reduction in left ventricular end-systolic diameter (P<0.05). For primary outcomes, in-hospital mortality occurred in 2 patients (4.17%). No additional deaths were reported at 60 or 90 d after surgery. During 90-180 d after surgery, one patient in the TF-TAVR group died of sudden cardiac death, and one in the TA-TAVR group died of gastroin-testinal bleeding. During 180 d-1 year after surgery, one patient in the TF-TAVR group died of low cardiac output syndrome. No statistically significant differences were observed in 1-year Kaplan-Meier survival curves between the two groups (P>0.05). No conduction block events occurred in TA-TAVR group during hospitalization or 1-year follow-up, while high-grade atrioventricular block, left bundle branch block, permanent pacemaker implantation occurred in TF-TAVR group during hospitalization (12.00%, 4.00%, and 12.00%, respectively).
CONCLUSIONS
TAVR demonstrates high feasibility and acceptable safety for severe PNAR patients who are not suitable for conventional SAVR. Both TF-TAVR and TA-TAVR show comparable early postoperative efficacy and safety profiles.
Humans
;
Transcatheter Aortic Valve Replacement/adverse effects*
;
Aortic Valve Insufficiency/surgery*
;
Retrospective Studies
;
Male
;
Female
;
Aged
;
Treatment Outcome
;
Aortic Valve/surgery*
;
Aged, 80 and over
;
Heart Valve Prosthesis
6.Experience of the use of cerebral embolic protection device during transcatheter aortic valve replacement.
Lan ZHANG ; Xinmin LIU ; Ziwei XI ; Fei YUAN ; Jing YAO ; Zhengming JIANG ; Yunfeng YAN ; Guangyuan SONG
Journal of Zhejiang University. Medical sciences 2025;54(4):541-548
OBJECTIVES:
To evaluate the feasibility, efficacy and safety of Sentinel cerebral embolic protection device (CEPD) during transcatheter aortic valve replacement (TAVR). This study is a subgroup analysis of the China Moderate to Severe Valvular Heart Disease Registry, which has been registered at the Chinese Clinical Trial Registry (ChiCTR2300075006).
METHODS:
Patients undergoing TAVR with the Sentinel CEPD from October 2023 to September 2024 were retrospectively enrolled. A total of 80 patients were included, with a median age of 72 (68, 76) years, including 52 males (65.0%) and 28 females (35.0%); 62 patients (77.5%) with tricuspid valves, and 18 patients (22.5%) with bicuspid valves; 34 patients (42.5%) with type Ⅰ aortic arch, 24 patients (30.0%) with type Ⅱ aortic arch, 12 patients (15.0%) with type Ⅲ aortic arch, and 10 patients (12.5%) with bovine-type aortic arch. Clinical data of the patients were summarized and analyzed. The primary endpoints were success rate of Sentinel CEPD implantation, as well as all-cause death, symptomatic stroke, transient ischemic attack, and Sentinel CEPD access vessel complications during hospitalization and within 30 days postoperatively.
RESULTS:
In the 80 patients, self-expanding valves were used in 68 cases (85.0%) and balloon-expandable valves in 12 cases (15.0%). Seventy-nine patients (98.8%) successfully underwent TAVR with Sentinel CEPD deployment. Macroscopically visible debris was captured in 92.5% (74/80) by filters of Sentinel CEPD. Although the procedure time for Sentinel CEPD placement was slightly longer in patients with bovine-type aortic arch, there was no statistically significant difference in deployment time among different aortic arch types (P>0.05). During hospitalization and within 30 days postoperatively, only one case of transient ischemic attack occurred, and there was no all-cause mortality, symptomatic stroke, or access-site vascular complications related to the Sentinel CEPD observed.
CONCLUSIONS
The Sentinel CEPD demonstrates high feasibility across aortic arch types, potential efficacy in embolic capture, and excellent safety in TAVR.
Humans
;
Transcatheter Aortic Valve Replacement/adverse effects*
;
Male
;
Female
;
Aged
;
Embolic Protection Devices
;
Retrospective Studies
;
Intracranial Embolism/prevention & control*
;
Aged, 80 and over
;
Aortic Valve Stenosis/surgery*
;
Aortic Valve/surgery*
8.Preliminary experience of transcatheter pulmonary valve replacement using domestic balloon-expandable valve.
Zhen Gang ZHAO ; Rui Tao LI ; Xin WEI ; Yong PENG ; Jia Fu WEI ; Sen HE ; Qiao LI ; Xiao LI ; Yi Jian LI ; Xiang LI ; Xuan ZHOU ; Ming Xia ZHENG ; Guo CHEN ; Qi AN ; Mao CHEN ; Yuan FENG
Chinese Journal of Cardiology 2023;51(8):825-831
Objectives: To evaluate the feasibility and preliminary clinical results of transcatheter pulmonary valve replacement (TPVR) with the domestically-produced balloon-expandable Prizvalve system. Methods: This is a prospective single-center observational study. Patients with postoperative right ventricular outflow tract (RVOT) dysfunction, who were admitted to West China Hospital of Sichuan University from September 2021 to March 2023 and deemed anatomically suitable for TPVR with balloon-expandable valve, were included. Clinical, imaging, procedural and follow-up data were analyzed. The immediate procedural results were evaluated by clinical implant success rate, which is defined as successful valve implantation with echocardiography-assessed pulmonary regurgitation
Male
;
Humans
;
Pulmonary Valve/surgery*
;
Heart Valve Prosthesis/adverse effects*
;
Heart Valve Prosthesis Implantation
;
Constriction, Pathologic/surgery*
;
Prospective Studies
;
Ventricular Outflow Obstruction/surgery*
;
Treatment Outcome
;
Cardiac Catheterization/methods*
;
Transcatheter Aortic Valve Replacement
10.Preliminary experience of transcatheter pulmonary valve replacement using domestic balloon-expandable valve.
Zhen Gang ZHAO ; Rui Tao LI ; Xin WEI ; Yong PENG ; Jia Fu WEI ; Sen HE ; Qiao LI ; Xiao LI ; Yi Jian LI ; Xiang LI ; Xuan ZHOU ; Ming Xia ZHENG ; Guo CHEN ; Qi AN ; Mao CHEN ; Yuan FENG
Chinese Journal of Cardiology 2023;51(8):825-831
Objectives: To evaluate the feasibility and preliminary clinical results of transcatheter pulmonary valve replacement (TPVR) with the domestically-produced balloon-expandable Prizvalve system. Methods: This is a prospective single-center observational study. Patients with postoperative right ventricular outflow tract (RVOT) dysfunction, who were admitted to West China Hospital of Sichuan University from September 2021 to March 2023 and deemed anatomically suitable for TPVR with balloon-expandable valve, were included. Clinical, imaging, procedural and follow-up data were analyzed. The immediate procedural results were evaluated by clinical implant success rate, which is defined as successful valve implantation with echocardiography-assessed pulmonary regurgitation
Male
;
Humans
;
Pulmonary Valve/surgery*
;
Heart Valve Prosthesis/adverse effects*
;
Heart Valve Prosthesis Implantation
;
Constriction, Pathologic/surgery*
;
Prospective Studies
;
Ventricular Outflow Obstruction/surgery*
;
Treatment Outcome
;
Cardiac Catheterization/methods*
;
Transcatheter Aortic Valve Replacement

Result Analysis
Print
Save
E-mail