1.PHF5A Promotes Proliferation and Migration of Non-Small Cell Lung Cancer by Regulating of PI3K/AKT Pathway.
Houhui WANG ; Fanglei LIU ; Chunxue BAI ; Nuo XU
Chinese Journal of Lung Cancer 2023;26(1):10-16
		                        		
		                        			BACKGROUND:
		                        			There have been many significant advances in the diagnosis and treatment of non-small cell lung cancer (NSCLC). However, the mechanism underlying the progression of NSCLC is still not clear. Plant homodomain finger-like domain-containing protein 5A (PHF5A) plays an important role in processes of chromatin remodeling, morphological development of tissues and organs and maintenance of stem cell pluripotency. This study aims to investigate the role of PHF5A in the proliferation and migration of NSCLC.
		                        		
		                        			METHODS:
		                        			A549 and PC-9 PHF5A overexpression cell lines were constructed. PHF5A expression was decreased in H292 and H1299 cells by using siRNA. Flow cytometry was used to detect the cell cycle. MTT assay and clone formation assay were used to examine the proliferative ability of NSCLC, while migration assay and wound healing assay were performed to evaluate the ability of migration. Western blot analysis was used to measure the expressions of PI3K, p-AKT and the associated downstream factors.
		                        		
		                        			RESULTS:
		                        			Up-regulation of PHF5A in A549 and PC-9 cells increased the proliferation rate, while down-regulation of PHF5A in H292 and H1299 cells inhibited the proliferation rate at 24 h, 48 h and 72 h (P<0.05). The metastatic ability was elevated in the PHF5A-overexpresion groups, while reduced in the PHF5A-down-regulation group (P<0.05). In addition, reduced expression of PHF5A induced cell cycle arrest at G1/S phase (P<0.05). Furthermore, decreased expression of PHF5A reduced the expression levels of PI3K, phosphorylation of AKT, c-Myc (P<0.05) and elevated the expression of p21 (P<0.05).
		                        		
		                        			CONCLUSIONS
		                        			These results demonstrated that PHF5A may play an important role in progression of NSCLC by regulating the PI3K/AKT signaling pathway.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Carcinoma, Non-Small-Cell Lung/pathology*
		                        			;
		                        		
		                        			Lung Neoplasms/pathology*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation/genetics*
		                        			;
		                        		
		                        			Cell Movement/genetics*
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			Trans-Activators/genetics*
		                        			;
		                        		
		                        			RNA-Binding Proteins/metabolism*
		                        			
		                        		
		                        	
2.The role and mechanism of tumor metastasis-associated gene 1 in radiosensitivity of HeLa cells.
Fang Zhou SUN ; Jin Song WANG ; Chun Xiao LI ; Ting WANG ; Jing Yao ZHANG ; Yan Tong ZHOU ; Hai Juan WANG ; Hai Li QIAN
Chinese Journal of Oncology 2022;44(9):962-967
		                        		
		                        			
		                        			Objective: To determine the effect of tumor metastasis-associated gene 1 (MTA1) on the sensitivity of HeLa cells to radiotherapy, and to clarify its molecular mechanism. Methods: The transcriptome differences between MTA1 knocked down Hela cells and control cells were analyzed, and the differentially expressed genes (DEGs) was used to perform Gene-Set Enrichment Analysis (GSEA) and Gene Ontology (GO) cluster analysis. Flow cytometry was used to detect apoptosis in MTA1-overexpressed HeLa cells and control cells before and after 10 Gy X-ray irradiation. Cloning formation assay and real-time cellular analysis (RTCA) were used to monitor the cell proliferation before and after 2 Gy X-ray irradiation. To dissect the underlying molecular mechanisms of MTA1 affecting the sensitivity of radiotherapy, the proteins encoded by the DEGs were selected to construct a protein-protein interaction network, the expression of γ-H2AX was detected by immunofluorescence assay, and the expression levels of γ-H2AX, β-CHK2, PARP and cleaved caspase 3 were measured by western blot. Results: By transcriptome sequencing analysis, we obtained 649 DEGs, of which 402 genes were up-regulated in MTA1 knockdown HeLa cells and 247 genes were down-regulated. GSEA results showed that DEGs associated with MTA1 were significantly enriched in cellular responses to DNA damage repair processes. The results of flow cytometry showed that the apoptosis rate of MTA1 over-expression group (15.67±0.81)% after 10 Gy X-ray irradiation was significantly lower than that of the control group [(40.27±2.73)%, P<0.001]. After 2 Gy X-ray irradiation, the proliferation capacity of HeLa cells overexpressing MTA1 was higher than that of control cells (P=0.024). The numbers of colon in MTA1 over-expression group before and after 2 Gy X-ray irradiation were (176±7) and (137±7) respectively, higher than (134±4) and (75±4) in control HeLa cells (P<0.05). The results of immunofluorescence assay showed that there was no significant expression of γ-H2AX in MTA1 overexpressed and control HeLa cells without X-ray irradiation. Western blot results showed that the expression level of β-CHK2 in MTA1-overexpressing HeLa cells (1.04±0.06) was higher than that in control HeLa cells (0.58±0.25, P=0.036) after 10 Gy X-ray irradiation. The expression levels of γ-H2AX, PARP, and cleaved caspase 3 were 0.52±0.13, 0.52±0.22, and 0.63±0.18, respectively, in HeLa cells overexpressing MTA1, which were lower than 0.87±0.06, 0.78±0.12 and 0.90±0.12 in control cells (P>0.05). Conclusions: This study showed that MTA1 is significantly associated with radiosensitivity in cervical cancer HeLa cells. MTA1 over-expression obviously reduces the sensitivity of cervical cancer cells to X-ray irradiation. Mechanism studies initially indicate that MTA1 reduces the radiosensitivity of cervical cancer cells by inhibiting cleaved caspase 3 to suppress apoptosis and increasing β-CHK2 to promote DNA repair.
		                        		
		                        		
		                        		
		                        			Apoptosis/genetics*
		                        			;
		                        		
		                        			Caspase 3/metabolism*
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			HeLa Cells
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Poly(ADP-ribose) Polymerase Inhibitors
		                        			;
		                        		
		                        			Radiation Tolerance/genetics*
		                        			;
		                        		
		                        			Repressor Proteins/metabolism*
		                        			;
		                        		
		                        			Trans-Activators/metabolism*
		                        			;
		                        		
		                        			Uterine Cervical Neoplasms/radiotherapy*
		                        			
		                        		
		                        	
3.UPF1 increases amino acid levels and promotes cell proliferation in lung adenocarcinoma via the eIF2α-ATF4 axis.
Lei FANG ; Huan QI ; Peng WANG ; Shiqing WANG ; Tianjiao LI ; Tian XIA ; Hailong PIAO ; Chundong GU
Journal of Zhejiang University. Science. B 2022;23(10):863-875
		                        		
		                        			
		                        			Up-frameshift 1 (UPF1), as the most critical factor in nonsense-mediated messenger RNA (mRNA) decay (NMD), regulates tumor-associated molecular pathways in many cancers. However, the role of UPF1 in lung adenocarcinoma (LUAD) amino acid metabolism remains largely unknown. In this study, we found that UPF1 was significantly correlated with a portion of amino acid metabolic pathways in LUAD by integrating bioinformatics and metabolomics. We further confirmed that UPF1 knockdown inhibited activating transcription factor 4 (ATF4) and Ser51 phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), the core proteins in amino acid metabolism reprogramming. In addition, UPF1 promotes cell proliferation by increasing the amino-acid levels of LUAD cells, which depends on the function of ATF4. Clinically, UPF1 mRNA expression is abnormal in LUAD tissues, and higher expression of UPF1 and ATF4 was significantly correlated with poor overall survival (OS) in LUAD patients. Our findings reveal that UPF1 is a potential regulator of tumor-associated amino acid metabolism and may be a therapeutic target for LUAD.
		                        		
		                        		
		                        		
		                        			Activating Transcription Factor 4/genetics*
		                        			;
		                        		
		                        			Adenocarcinoma of Lung
		                        			;
		                        		
		                        			Amino Acids
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Eukaryotic Initiation Factor-2
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lung Neoplasms
		                        			;
		                        		
		                        			RNA Helicases/metabolism*
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			;
		                        		
		                        			Trans-Activators/metabolism*
		                        			
		                        		
		                        	
4.Targeting-YAP/TAZ therapies for head and neck cancer, directly or indirectly?
West China Journal of Stomatology 2021;39(5):493-500
		                        		
		                        			
		                        			YAP/TAZ are wild over-activated in head and neck squamous cell carcinoma (HNSCC) with high potential as a direct therapy target for HNSCC treatments. However, the efforts on the directly targeting-YAP/TAZ therapies over the past decade, have very limited impacts, mainly caused by: 1. There is still none effective and specific YAP/TAZ inhibitor with clinical potential; 2. YAP/TAZ might not be directly targeted, because of their multiple important biological functions, such as: regulation of cell proliferation and survival, stem cell maintain, regulation of organ development, organ size control, and tissue regeneration. Interestingly, the over-activation of YAP/TAZ in HNSCC mainly be regulated by upstream abnormal molecular or biological events, instead of genes alteration of YAP/TAZ. Therefore, exploring the alternative molecular events regulating YAP/TAZ activation and molecular mechanism in HNSCC might help to uncover novel indirect targets of YAP/TAZ therapies for HNSCC prevention and treatment.
		                        		
		                        		
		                        		
		                        			Adaptor Proteins, Signal Transducing/metabolism*
		                        			;
		                        		
		                        			Head and Neck Neoplasms
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Phosphoproteins/metabolism*
		                        			;
		                        		
		                        			Trans-Activators/metabolism*
		                        			;
		                        		
		                        			Transcription Factors
		                        			
		                        		
		                        	
5.The Role of HBx Gene Mutations in PLA R Positive Hepatitis-B-associated Membranous Nephropathy.
Hui DONG ; Yan XU ; Ting XU ; Jing Yi SUN ; Quan Dong BU ; Yan Fei WANG ; Lin CHE ; Long ZHAO ; Wei JIANG
Biomedical and Environmental Sciences 2020;33(4):269-272
		                        		
		                        		
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Gene Expression
		                        			;
		                        		
		                        			Glomerulonephritis, Membranous
		                        			;
		                        		
		                        			etiology
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Hepatitis B
		                        			;
		                        		
		                        			complications
		                        			;
		                        		
		                        			Hepatitis B virus
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Receptors, Phospholipase A2
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Trans-Activators
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Viral Regulatory and Accessory Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
6.Effect of Modified Wuzi Yanzong Pill () on Tip60-Mediated Apoptosis in Testis of Male Rats after Microwave Radiation.
Hai-Xiang HU ; Jing SUN ; Ya-Jing GAO ; Hong FANG ; Shao-Qiang XU ; Jing DONG ; Li-Zhao WEI ; Shao-Bo LUO ; Chuan-Yun SHEN ; Qi-Long ZHANG ; Ya-Lan XIE
Chinese journal of integrative medicine 2019;25(5):342-347
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effect of a modified Wuzi Yanzong Pill (, WZYZP) on the male rats' testis after microwave radiation, as well as its potential mechanism.
		                        		
		                        			METHODS:
		                        			Forty-five male rats were randomly assigned to three groups: the control group, the radiation group, and the WZYZP group. The rats in the radiation group and WZYZP group were exposed to microwave radiation for 15 min once, while the rats in the control group were not exposed to any radiation. The rats in the WZYZP group were given a modified of WZYZP by gavage daily for 7 days. Apoptosis in the testis was evaluated using terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) assay. Histopathological alterations of the testis were observed by haematoxylin-eosin (HE) staining. Tat-interactive protein, 60kD (Tip60) and p53 expressions were determined by Western blotting.
		                        		
		                        			RESULTS:
		                        			The apoptosis index (AI) in the radiation group was higher than that of the WZYZP group and control group on day 1 (D1), day 7 (D7) day 14 (D14) after radiation (P<0.05). The seminiferous tubules were of normal morphology in the control group. In the radiation group, the partial seminiferous tubules were collapsed, basement membranes of the seminiferous epithelia became detached. WZYZP could restore the morphological changes. There was no expression of Tip60 among the three groups on D7 and D14. The expression of p53 was higher in the radiation group than in the control group (P<0.05). WZYZP could down-regulate the rising p53 induced by radiation on D7 and D14 (P<0.05).
		                        		
		                        			CONCLUSION
		                        			A modified WZYZP may affect germ cells, and its protective effects may partly result from its ability to intervene in Tip60 mediated apoptosis.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Microwaves
		                        			;
		                        		
		                        			Rats, Wistar
		                        			;
		                        		
		                        			Testis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			radiation effects
		                        			;
		                        		
		                        			Trans-Activators
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Tumor Suppressor Protein p53
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
7.MRTF-A Regulates the Proliferation and Migration of Non-small Cell Lung Cancer Cells of A549 through HOTAIR.
Kun ZHANG ; Yubin ZHOU ; Gang FENG ; Fuchun ZENG
Chinese Journal of Lung Cancer 2019;22(2):82-89
		                        		
		                        			BACKGROUND:
		                        			Non-small cell lung cancer (NSCLC) is a kind of lung cancer, because its high incidence has been concerned. Therefore, it has great significance to reveal the pathogenesis of NSCLC. As a transcriptional regulatory factor, MATF-A plays an important role in the development of multiple tumors, can regulate the migration process of a variety of tumor cells. HOTAIR is a long non-coding RNA (LncRNA) found in recent years, which expresses abnormally in multiple tumors and is involved in the proliferation and migration of multiple tumors. The aim of this study is to explore the role of MRTF-A through HOTAIR to regulate the proliferation and migration of NSCLC cell A549 cell.
		                        		
		                        			METHODS:
		                        			We constructed the overexpression plasmid and interfering plasmid of MRTF-A, and detected the effect of MRTF-A on the proliferation and migration of A549 cells by CCK8 and wound healing methods respectively. Then, we designed the siRNA of HOTAIR to detect its effect on the proliferation and migration of A549 cells. Through qRT-PCR, we detected the effect of MRTF-A on HOTAIR expression. Finally, we constructed HOTAIR's promoter, and detect the effect of MRTF-A on HOTAIR promoter activity by luciferase reporter gene test.
		                        		
		                        			RESULTS:
		                        			Overexpression of MRTF-A promotes the proliferation and migration of A549 cells, while silent MRTF-A inhibits its proliferation and migration. Next, we found that interfered HOTAIR expression inhibited the proliferation of A549 cells. We found that MRTF-A could influence the expression of HOTAIR and regulate the activity of HOTAIR promoter.
		                        		
		                        			CONCLUSIONS
		                        			MRTF-A regulates the proliferation and migration of A549 cell through HOTAIR.
		                        		
		                        		
		                        		
		                        			A549 Cells
		                        			;
		                        		
		                        			Carcinoma, Non-Small-Cell Lung
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Promoter Regions, Genetic
		                        			;
		                        		
		                        			RNA, Long Noncoding
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Trans-Activators
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
8.Mechanism of effective components of Mori Folium in alleviating insulin resistance based on JNK signaling pathway.
Ying-Hui LIU ; Xin MOU ; Di-Yi ZHOU ; Cheng-Min SHOU
China Journal of Chinese Materia Medica 2019;44(5):1019-1025
		                        		
		                        			
		                        			A stable hepatoma cell line(Hep G2 cell) insulin resistance model was established and used to analyze the effect of effective components of Mori Folium in alleviating insulin resistance,and preliminary explore the mechanism for alleviating insulin resistance. The Hep G2 insulin action concentration and the duration of action were investigated using the glucose oxidase method(GOD-POD method) to establish a stable Hep G2 insulin resistance model. Normal control group,model group,Mori Folium polysaccharide group,Mori Folium flavonoid group and rosiglitazone group were divided to determine the glucose consumption. The effect of Mori Folium effective components on Hep G2 insulin resistance was analyzed. The mRNA expressions of JNK,IRS-1 and PDX-1 in each group were detected by Real-time quantitative PCR(qRT-PCR). The protein expressions of p-JNK,IRS-1 and PDX-1 were detected by Western blot. And the mechanism of effective components of Mori Folium in alleviating insulin resistance was investigated. The results showed that the glucose consumption was significantly decreased in the insulin resistance cells after incubation with 25. 0 mg·L-1 insulin for 36 h(P<0. 01),and the model was relatively stable within 36 h. Mori Folium polysaccharides and flavonoids all alleviated insulin resistance,among which Mori Folium flavonoids had better effect in alleviating Hep G2 insulin resistance(P<0. 05). The qRT-PCR analysis showed that Mori Folium polysaccharides and flavonoids could inhibit JNK and IRS-1 mRNA expressions,while enhancing PDX-1 mRNA expression. Western blot analysis displayed that Mori Folium polysaccharides and flavonoids could inhibit p-JNK and IRS-1 protein expressions,while enhancing PDX-1 protein expression. Mori Folium polysaccharides and flavonoids can alleviate insulin resistance in Hep G2 cells,and its mechanism may be the alleviation of insulin resistance by inhibiting JNK signaling pathway.
		                        		
		                        		
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Glucose
		                        			;
		                        		
		                        			Hep G2 Cells
		                        			;
		                        		
		                        			Homeodomain Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Insulin
		                        			;
		                        		
		                        			Insulin Receptor Substrate Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Insulin Resistance
		                        			;
		                        		
		                        			MAP Kinase Kinase 4
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			MAP Kinase Signaling System
		                        			;
		                        		
		                        			Morus
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Plant Leaves
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Trans-Activators
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
9.Transcription and regulation of hepatitis B virus genes in host sperm cells.
Ying ZHONG ; Dong-Ling LIU ; Mohamed Morsi M AHMED ; Peng-Hao LI ; Xiao-Ling ZHOU ; Qing-Dong XIE ; Xiao-Qing XU ; Ting-Ting HAN ; Zhi-Wei HOU ; Ji-Hua HUANG ; Lan XU ; Tian-Hua HUANG
Asian Journal of Andrology 2018;20(3):284-289
		                        		
		                        			
		                        			To investigate whether transcription of hepatitis B virus (HBV) gene occurs in human sperm, total RNA was extracted from sperm of patients with chronic HBV infection (test-1), from donor sperm transfected with a plasmid containing the full-length HBV genome (test-2), and from nontransfected donor sperm (control), used as the template for reverse transcription-polymerase chain reaction (RT-PCR). Positive bands for HBV DNA were observed in the test groups but not in the control. Next, to identify the role of host genes in regulating viral gene transcription in sperm, total RNA was extracted from 2-cell embryos derived from hamster oocytes fertilized in vitro by HBV-transfected (test) or nontransfected (control) human sperm and successively subjected to SMART-PCR, suppression subtractive hybridization, T/A cloning, bacterial amplification, microarray hybridization, sequencing and the Basic Local Alignment Search Tool (BLAST) search to isolate differentially expressed genes. Twenty-nine sequences showing significant identity to five human gene families were identified, with chorionic somatomammotropin hormone 2 (CSH2), eukaryotic translation initiation factor 4 gamma 2 (EIF4G2), pterin-4 alpha-carbinolamine dehydratase 2 (PCBD2), pregnancy-specific beta-1-glycoprotein 4 (PSG4) and titin (TTN) selected to represent target genes. Using real-time quantitative RT-PCR (qRT-PCR), when CSH2 and PCBD2 (or EIF4G2, PSG4 and TTN) were silenced by RNA interference, transcriptional levels of HBV s and x genes significantly decreased (or increased) (P < 0.05). Silencing of a control gene in sperm did not significantly change transcription of HBV s and x genes (P > 0.05). This study provides the first experimental evidence that transcription of HBV genes occurs in human sperm and is regulated by host genes.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Connectin/genetics*
		                        			;
		                        		
		                        			Cricetinae
		                        			;
		                        		
		                        			Eukaryotic Initiation Factor-4G/genetics*
		                        			;
		                        		
		                        			Gene Expression Regulation/genetics*
		                        			;
		                        		
		                        			Gene Silencing
		                        			;
		                        		
		                        			Growth Hormone/genetics*
		                        			;
		                        		
		                        			Hepatitis B Surface Antigens/genetics*
		                        			;
		                        		
		                        			Hepatitis B virus/genetics*
		                        			;
		                        		
		                        			Hepatitis B, Chronic/virology*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hydro-Lyases/metabolism*
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Pregnancy-Specific beta 1-Glycoproteins/genetics*
		                        			;
		                        		
		                        			RNA, Viral/analysis*
		                        			;
		                        		
		                        			Spermatozoa/virology*
		                        			;
		                        		
		                        			Trans-Activators/genetics*
		                        			;
		                        		
		                        			Transcription, Genetic
		                        			;
		                        		
		                        			Transfection
		                        			;
		                        		
		                        			Viral Regulatory and Accessory Proteins
		                        			
		                        		
		                        	
10.Myeloid and erythroid hematopoietic transcription factor expression decline after knockdown ofgenes in zebrafish embryos.
Shifang HOU ; Zhihua WANG ; Jun WANG ; Zhixu HE ; Liping SHU ;
Journal of Zhejiang University. Medical sciences 2016;45(6):620-625
		                        		
		                        			
		                        			                    
To investigate the effect ofgene down-regulation on early hematopoietic development of zebrafish.Phosphorodiamidate morpholino oligomer (PMO) technology was used to downregulategene expression in Zebrafish. Zebrafish embryos injected phosphorodiamidate morpholino antisense oligonucleotide ofgene mRNA by microinjection at unicellular stage were taken as the experimental group, and those injected meaningless phosphorodiamidate morpholino antisense oligonucleotide were taken as the control. The embryos were collected at 18, 24, 30 and 36 hpf after the fertilization. The real-time fluorescent quantitative PCR (RT-PCR) and whole embryohybridization methods were used to detect the expression of myeloid hematopoietic transcription factorand erythroid hematopoietic transcription factorin zebrafish.RT-PCR showed that the expressions ofanddecreased in the experimental group compared with the control group (all<0.05). Whole embryohybridization showed that the blue-black positive hybridization signals ofandin experimental group were shallow than those in the control group.Myeloid hematopoietic and erythroid hematopoietic of zebrafish are blocked with the downregulation ofgene.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Down-Regulation
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Embryo, Nonmammalian
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			GATA1 Transcription Factor
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Gene Knockdown Techniques
		                        			;
		                        		
		                        			Hematopoiesis
		                        			;
		                        		
		                        			In Situ Hybridization
		                        			;
		                        		
		                        			Lamin Type A
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Proto-Oncogene Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Trans-Activators
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Zebrafish
		                        			;
		                        		
		                        			embryology
		                        			;
		                        		
		                        			genetics
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail