1.Survival and toxicity outcomes with radiotherapy technique and timing in the management of Wilms tumor: A systematic review to inform a National Clinical Practice Guideline Development
Warren Bacorro ; Jane Efflyn Lardizabal-Bunyi ; Michelle Rodriguez ; Maria Cecilia Leongson-Cruz
Journal of Medicine University of Santo Tomas 2024;8(2):1429-1442
PURPOSE
Wilms tumor (WT) management has evolved into a multimodality paradigm that includes radiotherapy (RT), usually as an adjuvant or consolidative modality. Protocols are refined to maximize cure and compliance while minimizing acute toxicity and long-term effects. RT technique and timing are two factors that could improve these outcomes. We reviewed the evidence on survival and toxicity outcomes among WT patients with conventional versus advanced RT techniques and early versus delayed RT to inform a Department of Health (DOH) commissioned guideline.
MATERIALS AND METHODSWe systematically searched PubMed, EuropePMC, EBSCOHost, HERDIN, systematic review and clinical trial registries and official websites of scientific societies for relevant publications and grey literature. Eligibility screening, risk-of-bias assessment and data extraction were performed using a single-reviewer approach. Given the study and data heterogeneity, only a qualitative synthesis was performed. Certainty of evidence assessment was done using the GRADE approach.
RESULTSWe screened 314 studies and included seven in the review, including a phase 1/2 trial and six retrospective studies, all from first-world countries (US, France, Netherlands), except one from a newly industrialized country (Brazil). The certainty of evidence on the survival and toxicity outcomes with advanced RT techniques was very low. Moderate-certainty evidence supports that giving RT >14 days after surgery leads to increased mortality.
CONCLUSIONCurrent evidence does not support the routine use of advanced RT techniques; proper contextualization is necessary. Tertiary centers managing WT should strive to administer RT within 14 days after surgery whenever possible.
Wilms Tumor ; Nephroblastoma ; Radiotherapy ; Radiotherapy, Intensity-modulated ; Survival ; Toxicity
3.Angiotensin-(1-7) improves endothelium-dependent vasodilation in rats with monocrotaline-induced pulmonary arterial hypertension.
Xuan-Xuan LIU ; Ai-Dong CHEN ; Yan PAN ; Feng ZHANG ; Zhen-Bao QI ; Nan CAO ; Ying HAN
Acta Physiologica Sinica 2023;75(4):497-502
In this study, we used a rat model of pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT) to investigate the role and mechanism of angiotensin (Ang)-(1-7) in regulating pulmonary artery diastolic function. Three weeks after subcutaneous injection of MCT or normal saline, the right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) of rats were detected using a right heart catheter. Vascular endothelium-dependent relaxation was evaluated by acetylcholine (ACh)-induced vasodilation. The relaxation function of vascular smooth muscle was evaluated by sodium nitroprusside (SNP)-induced vasodilation. Human pulmonary artery endothelial cells (HPAECs) were incubated with Ang-(1-7) to measure nitric oxide (NO) release levels. The results showed that compared with control rats, RVSP and RVHI were significantly increased in the MCT-PAH rats, and both ACh or SNP-induced vasodilation were worsened. Incubation of pulmonary artery of MCT-PAH rats with Ang-(1-7) (1 × 10-9-1 × 10-4 mol/L) caused significant vaso-relaxation. Pre-incubation of Ang-(1-7) in the pulmonary artery of MCT-PAH rats significantly improved ACh-induced endothelium-dependent relaxation, but had no significant effect on SNP-induced endothelium-independent relaxation. In addition, Ang-(1-7) treatment significantly increased NO levels in HPAECs. The Mas receptor antagonist A-779 inhibited the effects of Ang-(1-7) on endothelium-dependent relaxation and NO release from endothelial cells. The above results demonstrate that Ang-(1-7) promotes the release of NO from endothelial cells by activating Mas receptor, thereby improving the endothelium-dependent relaxation function of PAH pulmonary arteries.
Rats
;
Humans
;
Animals
;
Vasodilation
;
Pulmonary Arterial Hypertension
;
Monocrotaline/toxicity*
;
Rats, Sprague-Dawley
;
Hypertension, Pulmonary/chemically induced*
;
Endothelial Cells
;
Pulmonary Artery
;
Endothelium
;
Acetylcholine/pharmacology*
;
Nitroprusside/pharmacology*
4.Environmental pollutants and Alzheimer's disease.
Acta Physiologica Sinica 2023;75(6):740-766
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive impairment. The main hypotheses about the pathogenesis of AD include the hypothesis of β-amyloid protein, the hypothesis of abnormal phosphorylation of Tau protein, and the hypothesis of neuroinflammation. In recent years, environmental pollutants have been considered as an important factor in causing neurological dysfunction. Common environmental pollutants include heavy metals, pesticides, polychlorinated biphenyls, microplastics, and air pollutants, all of which have been proven to have neurotoxicity. In this review, we not only discussed epidemiological and animal experimental studies that link environmental pollution with AD, but also summarized the mechanisms of action of relevant toxins, providing insights for studying the interrelationships between environmental pollutants and AD.
Animals
;
Alzheimer Disease/chemically induced*
;
Environmental Pollutants/toxicity*
;
Neurodegenerative Diseases
;
Plastics
;
Amyloid beta-Peptides/metabolism*
5.The Link between Exposure to Phthalates and Type 2 Diabetes Mellitus: A Study Based on NHANES Data and Bioinformatic Analysis.
Xue Kui LIU ; Shan Wen SI ; Yan YE ; Jia Yi LI ; He He LYU ; Ya Mei MA ; Cai Yan ZOU ; Hao Jie SUN ; Lei XUE ; Wei XU ; Hou Fa GENG ; Jun LIANG
Biomedical and Environmental Sciences 2023;36(9):892-896
6.Mechanism of bilobalide promoting neuroprotection of macrophages.
Yang-Yang CHEN ; Wen-Yuan JU ; Guo-Guo CHU ; Xiao-Hui LI ; Ru-Heng WEI ; Qing WANG ; Bao-Guo XIAO ; Cun-Gen MA
China Journal of Chinese Materia Medica 2023;48(15):4201-4207
This study aims to explore the neuroprotective effect of bilobalide(BB) and the mechanisms such as inhibiting inflammatory response in macrophage/microglia, promoting neurotrophic factor secretion, and interfering with the activation and differentiation of peripheral CD4~+ T cells. BB of different concentration(12.5, 25, 50, 100 μg·mL~(-1)) was used to treat the RAW264.7 and BV2 cells for 24 h. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay and cell counting kit-8(CCK-8) were employed to detect the cytotoxicity of BB and appropriate concentration was selected for further experiment. Lipopolysaccharide(LPS) was applied to elicit inflammation in RAW264.7 and BV2 cells, mouse bone marrow-derived macrophages(BMDMs), and primary microglia, respectively. The effect of BB on cell proliferation and secretion of inflammatory cytokines and neurotrophic factors was detected by enzyme-linked immunosorbent assay(ELISA). Spleen monocytes of C57BL/6 female mice(7-8 weeks old) were isolated, and CD4~+ T cells were separated by magnetic beads under sterile conditions. Th17 cells were induced by CD3/CD28 and the conditioned medium for eliciting the inflammation in BMDMs. The content of IL-17 cytokines in the supernatant was detected by ELISA to determine the effect on the activation and differentiation of CD4~+ T cells. In addition, PC12 cells were incubated with the conditioned medium for eliciting inflammation in BMDMs and primary microglia and the count and morphology of cells were observed. The cytoto-xicity was determined by lactate dehydrogenase(LDH) assay. The result showed that BB with the concentration of 12.5-100 μg·mL~(-1) had no toxicity to RAW264.7 and BV2 cells, and had no significant effect on the activity of cell model with low inflammation. The 50 μg·mL~(-1) BB was selected for further experiment, and the results indicated that BB inhibited LPS-induced secretion of inflammatory cytokines. The experiment on CD4~+ T cells showed that the conditioned medium for LPS-induced inflammation in BMDMs promoted the activation and differentiation of CD4~+ T cells, while the conditioned medium of the experimental group with BB intervention reduced the activation and differentiation of CD4~+ T cells. In addition, BB also enhanced the release of neurotrophic factors from BMDMs and primary microglia. The conditioned medium after BB intervention can significantly reduce the death of PC12 neurons, inhibit neuronal damage, and protect neurons. To sum up, BB plays a neuroprotective role by inhibiting macrophage and microglia-mediated inflammatory response and promoting neurotrophic factors.
Female
;
Rats
;
Mice
;
Animals
;
Bilobalides/pharmacology*
;
Neuroprotection
;
Lipopolysaccharides/toxicity*
;
Culture Media, Conditioned/pharmacology*
;
Mice, Inbred C57BL
;
Macrophages/metabolism*
;
Microglia
;
Cytokines/metabolism*
;
Nerve Growth Factors/pharmacology*
;
Inflammation/metabolism*
7.Aqueous extract of Epimedium sagittatum mitigates pulmonary fibrosis in mice.
Ru WANG ; Fei-Yue HOU ; Meng-Nan ZENG ; Bei-Bei ZHANG ; Qin-Qin ZHANG ; Shuang-Shuang XIE ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2023;48(20):5612-5622
This study aims to investigate the intervention effect of the aqueous extract of Epimedium sagittatum Maxim on the mouse model of bleomycin(BLM)-induced pulmonary fibrosis, so as to provide data support for the clinical treatment of pulmonary fibrosis. Ninety male C57BL/6N mice were randomized into normal(n=10), model(BLM, n=20), pirfenidone(PFD, 270 mg·kg~(-1), n=15), and low-, medium-, and high-dose E. sagittatum extract(1.67 g·kg~(-1), n=15; 3.33 g·kg~(-1), n=15; 6.67 g·kg~(-1), n=15) groups. The model of pulmonary fibrosis was established by intratracheal instillation of BLM(5 mg·kg~(-1)) in the other five groups except the normal group, which was treated with an equal amount of normal saline. On the day following the modeling, each group was treated with the corresponding drug by gavage for 21 days. During this period, the survival rate of the mice was counted. After gavage, the lung index was calculated, and the morphology and collagen deposition of the lung tissue were observed by hematoxylin-eosin(HE) and Masson staining, respectively. The levels of reactive oxygen species(ROS) in lung cell suspensions were measured by flow cytometry. The levels of glutathione peroxidase(GSH-Px), total superoxide dismutase(T-SOD), and malondialdehyde(MDA) the in lung tissue were measured. Terminal-deoxynucleoitidyl transferase-mediated nick-end labeling(TUNEL) was employed to examine the apoptosis of lung tissue cells. The content of interleukin-6(IL-6), chemokine C-C motif ligand 2(CCL-2), matrix metalloproteinase-8(MMP-8), transforming growth factor-beta 1(TGF-β1), alpha-smooth muscle actin(α-SMA), E-cadherin, collagen Ⅰ, and fibronectin in the lung tissue was measured by enzyme-linked immunosorbent assay(ELISA). The expression levels of F4/80, Ly-6G, TGF-β1, and collagen Ⅰ in the lung tissue were determined by immunohistochemistry. The mRNA levels of CCL-2, IL-6, and MMP-7 in the lung tissue were determined by qRT-PCR. The content of hydroxyproline(HYP) in the lung tissue was determined by alkaline hydrolysation. The expression of α-SMA and E-cadherin was detected by immunofluorescence, and the protein levels of α-SMA, vimentin, E-cadherin in the lung tissue were determined by Western blot. The results showed the aqueous extract of E. sagittatum increased the survival rate, decreased the lung index, alleviated the pathological injury, collagen deposition, and oxidative stress in the lung tissue, and reduced the apoptotic cells. Furthermore, the aqueous extract of E. sagittatum down-regulated the protein levels of F4/80 and Ly-6G and the mRNA levels of CCL-2, IL-6, and MMP-7 in the lung tissue, reduced the content of IL-6, CCL-2, and MMP-8 in the alveolar lavage fluid. In addition, it lowered the levels of HYP, TGF-β1, α-SMA, collagen Ⅰ, fibronectin, and vimentin, and elevated the levels of E-cadherin in the lung tissue. The aqueous extract of E. sagittatum can inhibit collagen deposition, alleviate oxidative stress, and reduce inflammatory response by regulating the expression of the molecules associated with epithelial-mesenchymal transition, thus alleviating the symptoms of bleomycin-induced pulmonary fibrosis in mice.
Mice
;
Male
;
Animals
;
Pulmonary Fibrosis/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Epimedium/metabolism*
;
Fibronectins/metabolism*
;
Matrix Metalloproteinase 7/therapeutic use*
;
Matrix Metalloproteinase 8/therapeutic use*
;
Vimentin/metabolism*
;
Interleukin-6/metabolism*
;
Mice, Inbred C57BL
;
Lung
;
Collagen/metabolism*
;
Bleomycin/toxicity*
;
RNA, Messenger/metabolism*
;
Cadherins/metabolism*
8.The Dynamics of Dopamine D2 Receptor-Expressing Striatal Neurons and the Downstream Circuit Underlying L-Dopa-Induced Dyskinesia in Rats.
Kuncheng LIU ; Miaomiao SONG ; Shasha GAO ; Lu YAO ; Li ZHANG ; Jie FENG ; Ling WANG ; Rui GAO ; Yong WANG
Neuroscience Bulletin 2023;39(9):1411-1425
L-dopa (l-3,4-dihydroxyphenylalanine)-induced dyskinesia (LID) is a debilitating complication of dopamine replacement therapy for Parkinson's disease. The potential contribution of striatal D2 receptor (D2R)-positive neurons and downstream circuits in the pathophysiology of LID remains unclear. In this study, we investigated the role of striatal D2R+ neurons and downstream globus pallidus externa (GPe) neurons in a rat model of LID. Intrastriatal administration of raclopride, a D2R antagonist, significantly inhibited dyskinetic behavior, while intrastriatal administration of pramipexole, a D2-like receptor agonist, yielded aggravation of dyskinesia in LID rats. Fiber photometry revealed the overinhibition of striatal D2R+ neurons and hyperactivity of downstream GPe neurons during the dyskinetic phase of LID rats. In contrast, the striatal D2R+ neurons showed intermittent synchronized overactivity in the decay phase of dyskinesia. Consistent with the above findings, optogenetic activation of striatal D2R+ neurons or their projections in the GPe was adequate to suppress most of the dyskinetic behaviors of LID rats. Our data demonstrate that the aberrant activity of striatal D2R+ neurons and downstream GPe neurons is a decisive mechanism mediating dyskinetic symptoms in LID rats.
Rats
;
Animals
;
Levodopa/toxicity*
;
Dopamine
;
Parkinsonian Disorders/drug therapy*
;
Oxidopamine
;
Dyskinesia, Drug-Induced
;
Corpus Striatum/metabolism*
;
Neurons/metabolism*
;
Receptors, Dopamine D2/metabolism*
;
Antiparkinson Agents/toxicity*
9.Acute toxicity test of the Li-Dan-He-Ji granules.
Mengjie SU ; Huan QIN ; Wei YI ; Lishan ZHOU ; Suqi YAN
Chinese Critical Care Medicine 2023;35(12):1316-1320
OBJECTIVE:
To observe the acute toxic reaction of the Li-Dan-He-Ji granules, and to evaluate its safety.
METHODS:
Sixty C57BL6/J mice were randomly divided into normal control group, vehicle group and drug treatment group, with 10 females and 10 males in each group. According to the Technical guidelines for the study of toxicity of single drug administration, the maximum administration dosage (MAD) was used to intragastric administration of Li-Dan-He-Ji granules 0.04 mL/g (42.8 g/kg), three times within 24 hours, with an interval of 6 hours. The vehicle group was fed with the same pure water. The normal control group received no treatment. The mice were observed continuously for 14 days, and the appearance characteristics, behavioral activities, body weight changes and the number of deaths in each group were recorded. At the 14 days, blood samples were collected from the eyeballs, and routine blood tests such as white blood cell count (WBC), lymphocyte count (LYM), neutrophil count (NEU), lymphocyte percentage (LYM%), neutrophil percentage (NEU%), red blood cell count (RBC), hemoglobin (Hb), and platelet count (PLT) were performed. And alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), creatinine (Cr) and other biochemical indicators. The mice were then sacrificed, and the histopathological changes of liver and kidney were observed by hematoxylin-eosin (HE) staining. The organ indexes of heart, liver, spleen, lung, kidney and thymus were calculated.
RESULTS:
The median lethal dose (LD50) of Li-Dan-He-Ji granules were not obtained. During the MAD experiment, the animals in each group did not die, their behavioral activities were normal, and there was no significant change in liver and kidney histopathological examination. There were no significant differences in body weight, blood routine, biochemical indexes and organ index among all groups (all P > 0.05). The body weight (g) of normal control female and male group, vehicle female and male group and drug female and male group before administration were 18.96±1.14, 19.65±1.45, 19.33±1.30, 19.53±1.22, 19.28±1.69 and 19.48±1.28; 14 days after administration were 27.69±0.81, 28.19±2.22, 27.77±1.00, 27.88±1.85, 27.92±1.33 and 28.07±1.93, respectively.
CONCLUSIONS
The Li-Dan-He-Ji granules have low oral toxicity, combined with clinical observation, can be safely used in infants.
Animals
;
Female
;
Humans
;
Male
;
Mice
;
Body Weight
;
Kidney
;
Leukocyte Count
;
Liver
;
Toxicity Tests, Acute
10.Epidemiological research progress in the effects of metal exposure on kidney.
Xiping YI ; Minxue SHEN ; Fei YANG
Journal of Central South University(Medical Sciences) 2023;48(4):601-607
Chronic kidney disease (CKD) is suffered progressive loss of kidney function lasting more than 3 months and is classified according to the degree of kidney damage (level of proteinuria) and the decreased glomerular filtration rate (GFR). The most severe form of CKD is end-stage renal disease. The prevalence of CKD is high with fast growth rate and the disease burden has become increasingly serious. CKD has become an important public health problem threatening human health. The etiology of CKD is complex. In addition to genetic factors, environmental factors are an important cause of CKD. With the development of industrialization, environmental metal pollution has become increasingly severe, and its impact on human health has received widespread attention. A large number of studies have shown that metals such as lead, cadmium, and arsenic can accumulate in the kidney, which can cause damage to the structure and function of the kidney, and play an important role in the development of CKD. Therefore, summarizing the epidemiological research progress in the relationship between arsenic, cadmium, lead, and other metal exposures and kidney diseases can provide new ideas for the prevention and control of kidney diseases caused by metal exposure.
Humans
;
Cadmium/toxicity*
;
Arsenic/toxicity*
;
Kidney
;
Renal Insufficiency, Chronic/epidemiology*
;
Kidney Failure, Chronic


Result Analysis
Print
Save
E-mail