1.Effect of activation of Toll-like receptor signaling pathway of peripheral blood mononuclear cell in recombinant hepatitis B surface antigen immune response.
Cong JIN ; Hai Yun HAO ; Wen Xin CHEN ; Ting WANG ; Yan Di LI ; Lin Zhu YI ; Yong Liang FENG ; Su Ping WANG
Chinese Journal of Epidemiology 2022;43(4):560-565
Objective: To explore the effect and mechanism of activation of peripheral blood mononuclear cell (PBMC) Toll-like receptor (TLR3) signaling pathway in recombinant HBsAg (rHBsAg) immune response. Methods: White blood cells were collected from peripheral blood of 13 healthy donors in the preparation of blood products. PBMC was isolated and treated with Poly I:C (Poly I:C group) and PBS (control group) respectively. 48 h later, some cells were collected and the expressions of TLR3 signaling pathway proteins were detected by flow cytometry. After activating (Poly I:C group)/inactivating (control group) TLR3 signaling pathway, rHBsAg was given to both groups for 72 h, and the proportions of DC, T, B cells and their subsets in PBMC were detected by flow cytometry. Paired t-test, paired samples wilcoxon signed-rank test and canonical correlation analyses were used for statistical analysis. Results: The percentage of TLR3 protein-positive cells (19.21%) and protein expression (8 983.95), NF-κB protein expression (26 193.13), the percentage of pNF-κB protein-positive cells (13.73%) and its proportion in NF-κB (16.03%), and the percentage of pIRF3 protein-positive cells (12.64%) and its proportion in IRF3 (21.80%) in Poly I:C group were higher than those in control group (11.54%, 8 086.00, 22 340.66, 8.72%, 9.71%, 9.57%, 19.12%) (P<0.05), and the percentage of TRIF protein-positive cells (89.75%) and protein expression (304 219.54) were higher in Poly I:C group than in the control group (89.64%, 288 149.72) (P>0.05). After PBMC stimulation by rHBsAg, the proportions of mDC (2.90%), pDC (1.80%), B cell (5.31%) and plasma cell (67.71%) in Poly I:C group were significantly higher than those in the control group (1.83%, 0.81%, 4.23%, 58.82%) (P<0.05). Results of canonical correlation analysis showed that the expression of TLR3 protein was positively correlated with the proportions of plasma cells, the expression of pIRF3 protein was positively correlated with the proportions of plasma cells and mDC, and the percentage of pNF-κB protein-positive cells and the percentage of pIRF3 protein-positive cells were positively correlated with the proportion of CD4+T cells. Conclusions: Poly I:C can activate TLR3/TRIF/NF-κB and TLR3/TRIF/IRF3 signaling pathway, promote the function of downstream signaling molecules, and then promote the maturation of DC, induce the immune responses of CD4+T cell, and promote the maturation and activation of B cells and the immune response of rHBsAg.
Adaptor Proteins, Vesicular Transport/pharmacology*
;
Hepatitis B Surface Antigens
;
Humans
;
Immunity
;
Leukocytes, Mononuclear/metabolism*
;
NF-kappa B
;
Poly I-C/pharmacology*
;
Signal Transduction
;
Toll-Like Receptor 3/metabolism*
;
Toll-Like Receptors
2.Anti-herpes simplex virus type Ⅰ of tectorigenin derivative and effect on Toll-like receptors in vitro.
Yuan WANG ; Ming-Ming YUAN ; Jing ZHOU ; Xiao-Han ZHENG ; Chong-Jun YUAN ; Shuai CHEN ; Sen LUO ; Lei ZHANG
China Journal of Chinese Materia Medica 2022;47(16):4428-4435
The study investigated the inhibitory effect and mechanism of tectorigenin derivative(SGY) against herpes simplex virus type Ⅰ(HSV-1) by in vitro experiments. The cytotoxicity of SGY and positive drug acyclovir(ACV) on African green monkey kidney(Vero) cells and mouse microglia(BV-2) cells was detected by cell counting kit-8(CCK-8) method, and the maximum non-toxic concentration and median toxic concentration(TC_(50)) of the drugs were calculated. After Vero cells were infected with HSV-1, the virulence was determined by cytopathologic effects(CPE) to calculate viral titers. The inhibitory effect of the tested drugs on HSV-1-induced cytopathy in Vero cells was measured, and their modes of action were initially explored by virus adsorption, replication and inactivation. The effects of the drugs on viral load of BV-2 cells 24 h after HSV-1 infection and the Toll-like receptor(TLR) mRNA expression were detected by real-time fluorescence quantitative PCR(RT-qPCR). The maximum non-toxic concentrations of SGY against Vero and BV-2 cells were 382.804 μg·mL~(-1) and 251.78 μg·mL~(-1), respectively, and TC_(50) was 1 749.98 μg·mL~(-1) and 2 977.50 μg·mL~(-1), respectively. In Vero cell model, the half maximal inhibitory concentration(IC_(50)) of SGY against HSV-1 was 54.49 μg·mL~(-1), and the selection index(SI) was 32.12, with the mode of action of significantly inhibiting replication and directly inactivating HSV-1. RT-qPCR results showed that SGY markedly reduced the viral load in cells. The virus model group had significantly increased relative expression of TLR2, TLR3 and tumor necrosis factor receptor-associated factor 3(TRAF3) and reduced relative expression of TLR9 as compared with normal group, and after SGY intervention, the expression of TLR2, TLR3 and TRAF3 was decreased to different degrees and that of TLR9 was enhanced. The expression of inflammatory factors inducible nitric oxide synthase(iNOS), tumor necrosis factor-α(TNF-α), and interleukin-1β(IL-1β) was remarkably increased in virus model group as compared with that in normal group, and the levels of these inflammatory factors dropped after SGY intervention. In conclusion, SGY significantly inhibited and directly inactivated HSV-1 in vitro. In addition, it modulated the expression of TLR2, TLR3 and TLR9 related pathways, and suppressed the increase of inflammatory factor levels.
Animals
;
Antiviral Agents/therapeutic use*
;
Chlorocebus aethiops
;
Herpes Simplex/pathology*
;
Herpesvirus 1, Human/metabolism*
;
Isoflavones
;
Mice
;
TNF Receptor-Associated Factor 3/pharmacology*
;
Toll-Like Receptor 2/metabolism*
;
Toll-Like Receptor 3/metabolism*
;
Toll-Like Receptor 9/metabolism*
;
Toll-Like Receptors/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Vero Cells
;
Virus Replication
3.Intermedin in Paraventricular Nucleus Attenuates Sympathoexcitation and Decreases TLR4-Mediated Sympathetic Activation via Adrenomedullin Receptors in Rats with Obesity-Related Hypertension.
Jing SUN ; Xing-Sheng REN ; Ying KANG ; Hang-Bing DAI ; Lei DING ; Ning TONG ; Guo-Qing ZHU ; Ye-Bo ZHOU
Neuroscience Bulletin 2019;35(1):34-46
Intermedin/adrenomedullin-2 (IMD/AM2), a member of the calcitonin gene-related peptide/AM family, plays an important role in protecting the cardiovascular system. However, its role in the enhanced sympathoexcitation in obesity-related hypertension is unknown. In this study, we investigated the effects of IMD in the paraventricular nucleus (PVN) of the hypothalamus on sympathetic nerve activity (SNA), and lipopolysaccharide (LPS)-induced sympathetic activation in obesity-related hypertensive (OH) rats induced by a high-fat diet for 12 weeks. Acute experiments were performed under anesthesia. The dynamic alterations of sympathetic outflow were evaluated as changes in renal SNA and mean arterial pressure (MAP) in response to specific drugs. Male rats were fed a control diet (12% kcal as fat) or a high-fat diet (42% kcal as fat) for 12 weeks to induce OH. The results showed that IMD protein in the PVN was downregulated, but Toll-like receptor 4 (TLR4) and plasma norepinephrine (NE, indicating sympathetic hyperactivity) levels, and systolic blood pressure were increased in OH rats. LPS (0.5 µg/50 nL)-induced enhancement of renal SNA and MAP was greater in OH rats than in obese or control rats. Bilateral PVN microinjection of IMD (50 pmol) caused greater decreases in renal SNA and MAP in OH rats than in control rats, and inhibited LPS-induced sympathetic activation, and these were effectively prevented in OH rats by pretreatment with the AM receptor antagonist AM22-52. The mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) inhibitor U0126 in the PVN partially reversed the LPS-induced enhancement of SNA. However, IMD in the PVN decreased the LPS-induced ERK activation, which was also effectively prevented by AM22-52. Chronic IMD administration resulted in significant reductions in the plasma NE level and blood pressure in OH rats. Moreover, IMD lowered the TLR4 protein expression and ERK activation in the PVN, and decreased the LPS-induced sympathetic overactivity. These results indicate that IMD in the PVN attenuates SNA and hypertension, and decreases the ERK activation implicated in the LPS-induced enhancement of SNA in OH rats, and this is mediated by AM receptors.
Adrenomedullin
;
metabolism
;
Animals
;
Blood Pressure
;
drug effects
;
physiology
;
Hypertension
;
etiology
;
Lipopolysaccharides
;
pharmacology
;
Male
;
Neuropeptides
;
metabolism
;
Obesity
;
complications
;
Rats, Sprague-Dawley
;
Receptors, Adrenomedullin
;
drug effects
;
metabolism
;
Sympathetic Nervous System
;
drug effects
;
metabolism
;
Toll-Like Receptor 4
;
metabolism
4.Houttuynia cordata polysaccharide alleviated intestinal injury and modulated intestinal microbiota in H1N1 virus infected mice.
Mei-Yu CHEN ; Hong LI ; Xiao-Xiao LU ; Li-Jun LING ; Hong-Bo WENG ; Wei SUN ; Dao-Feng CHEN ; Yun-Yi ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(3):187-197
Houttuynia cordata polysaccharide (HCP) is extracted from Houttuynia cordata, a key traditional Chinese medicine. The study was to investigate the effects of HCP on intestinal barrier and microbiota in H1N1 virus infected mice. Mice were infected with H1N1 virus and orally administrated HCP at a dosage of 40 mg(kg(d. H1N1 infection caused pulmonary and intestinal injury and gut microbiota imbalance. HCP significantly suppressed the expression of hypoxia inducible factor-1α and decreased mucosubstances in goblet cells, but restored the level of zonula occludens-1 in intestine. HCP also reversed the composition change of intestinal microbiota caused by H1N1 infection, with significantly reduced relative abundances of Vibrio and Bacillus, the pathogenic bacterial genera. Furthermore, HCP rebalanced the gut microbiota and restored the intestinal homeostasis to some degree. The inhibition of inflammation was associated with the reduced level of Toll-like receptors and interleukin-1β in intestine, as well as the increased production of interleukin-10. Oral administration of HCP alleviated lung injury and intestinal dysfunction caused by H1N1 infection. HCP may gain systemic treatment by local acting on intestine and microbiota. This study proved the high-value application of HCP.
Animals
;
Cytokines
;
metabolism
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
therapeutic use
;
Gastrointestinal Microbiome
;
drug effects
;
Houttuynia
;
chemistry
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
metabolism
;
Inflammation
;
drug therapy
;
pathology
;
Influenza A Virus, H1N1 Subtype
;
pathogenicity
;
Intestinal Mucosa
;
drug effects
;
metabolism
;
microbiology
;
pathology
;
Lung
;
drug effects
;
metabolism
;
pathology
;
Male
;
Mice, Inbred BALB C
;
Orthomyxoviridae Infections
;
drug therapy
;
pathology
;
physiopathology
;
Plant Extracts
;
chemistry
;
Polysaccharides
;
chemistry
;
pharmacology
;
therapeutic use
;
Toll-Like Receptors
;
metabolism
;
Zonula Occludens-1 Protein
;
metabolism
5.Network pharmacological study of Schizonepetae Herba and Saposhnikoviae Radix in treatment of ulcerative colitis.
Ying QU ; Shu-Xin ZHANG ; Lu ZHOU ; Li-Yuan FU ; Zi-Hao LIU ; Shi-Ying LI ; Ting-Ting DAI ; Xiang-Yang YANG ; Hui-Ru JI ; Min-Ran CAO
China Journal of Chinese Materia Medica 2019;44(24):5465-5472
The aim of this paper was to screen the active targets of Schizonepetae Herba and Saposhnikoviae Radix in the treatment of ulcerative colitis by means of network pharmacology,and to investigate their mechanism of action. The effective components of Schizonepetae Herba and Saposhnikoviae Radix were screened out by traditional Chinese medicine systematic pharmacological( TCMSP)database,with oral bioavilability( OB) ≥30% and drug-like( DL) ≥18% selected as the thresholds. Target PPI network was built between the main components and their corresponding targets. One hundred and eighty-two human genes corresponding to the medicine target sites were obtained from Uniprot database; 3 874 genes corresponding to ulcerative colitis were obtained from Genecard database.A total of 115 intersection genes were screened from disease genes and medicine genes,and the PPI interaction analysis was conducted by using String tool. Disease-target PPI network was drawn by using Cytoscape software,and component-target-disease network was constructed. One hundred and eight nodes and 1 882 connections were found,and then Cytoscape software was used to merge the networks and filter the core network for gene GO function analysis and KEGG pathway enrichment analysis. The mechanism of Schizonepetae Herba and Saposhnikoviae Radix was then verified by animal experiment. Gene GO functional analysis suggested that biological process,molecular functions and cell components were involved,and it was found that ulcerative colitis might be related to transcription factor activity,and cytokine receptor binding,etc. Gene KEGG pathway enrichment analysis showed that the mechanism of ulcerative colitis might be associated with TNF and Toll-like receptors( TLRs) signaling pathway-mediated cytoinflammatory factors interleukin-1( IL-1) and interleukin-6( IL6). The possible mechanism of the effective components of Schizonepetae Herba and Saposhnikoviae Radix in treating ulcerative colitis might be related to intervening the cytokine receptor binding of TNF and TLRs signaling pathways,reducing the transcription of nuclear factor-kappaB( NF-κB),and inhibiting the secretion of intestinal inflammatory factors IL-1 and IL-6.
Animals
;
Apiaceae/chemistry*
;
Colitis, Ulcerative/drug therapy*
;
Databases, Genetic
;
Drugs, Chinese Herbal/therapeutic use*
;
Humans
;
Interleukins/metabolism*
;
Lamiaceae/chemistry*
;
Medicine, Chinese Traditional
;
Phytotherapy
;
Plant Roots/chemistry*
;
Protein Interaction Mapping
;
Signal Transduction
;
Software
;
Toll-Like Receptors/metabolism*
6.Effects of ATP on expression of inflammatory factors in endothelial progenitor cells induced by LPS and the mechanisms.
Bolin XIAO ; Meifang CHEN ; Mei YANG ; Zhilin XIAO
Journal of Central South University(Medical Sciences) 2018;43(12):1301-1308
To investigate the effects of adenosine triphosphate (ATP) on expression of inflammatory factors induced by lipopolysaccharide (LPS) in endothelial progenitor cells (EPCs), and to elucidate the possible mechanisms.
Methods: Mononuclear cells were isolated from human umbilical cord blood by density gradient centrifugation, RT-PCR was performed to detect the expression of inflammatory factors induced by LPS (1 mg/mL) in EPCs, the effect of low concentration (5 μmol/L) of ATP on expression of IL-1β, MCP-1 and ICAM-1, and the effect of different concentrations (5, 50 μmol/L) of ATP on the expression of Toll-like receptor (TLR) 4, myeloid differentiation primary response protein 88 (MyD88) and CD14. Western blot was performed to detect expression of TLR4 regulated proteins MyD88 and CD14 or to detect the low concentration (1, 5 μmol/L) of ATP on the expression of TLR4, MyD88 and CD14 and the NF-κB signaling pathway.
Results: EPCs highly expressed TLR4, and its ligand LPS (1 mg/mL) significantly upregulated mRNA expression of IL-1β, MCP-1 and ICAM-1 and protein expression of MyD88 and CD14 in a time-dependent manner (P<0.01), accompanied by activation of ERK and NF-κB signal pathway. ATP at low concentration (5 μmol/L) significantly inhibited LPS-induced mRNA expression of IL-1β, MCP-1 and ICAM-1(P<0.05), downregulated the LPS-induced protein expression of TLR4, MyD88 and CD14 in EPCs (P<0.05), and suppressed LPS-induced activation of NF-κB signaling pathway (P<0.05).
Conclusion: ATP at low concentration may suppress LPS-induced expression of inflammatory factors in EPCs through negative regulation of the TLR4 signaling pathway.
Adenosine Triphosphate
;
pharmacology
;
Endothelial Progenitor Cells
;
drug effects
;
Gene Expression Regulation
;
drug effects
;
Humans
;
Leukocytes, Mononuclear
;
cytology
;
Lipopolysaccharide Receptors
;
genetics
;
Lipopolysaccharides
;
pharmacology
;
Myeloid Differentiation Factor 88
;
genetics
;
NF-kappa B
;
metabolism
;
Signal Transduction
;
drug effects
;
Toll-Like Receptor 4
;
genetics
7.Decreased phosphorylation of mitogen activated protein kinase and protein kinase B contribute to the inhibition of osteogenic differentiation mediated by activation of Toll like receptor in human periodontal ligament stem cells.
Yun Yan ZHU ; Qian LI ; Yi Mei ZHANG ; Yan Heng ZHOU
Journal of Peking University(Health Sciences) 2018;50(1):33-41
OBJECTIVE:
To investigate the effects of Toll like receptors on the osteogenesis of human pe-riodontal ligament stem cells (hPDLSCs) and probable molecular mechanism.
METHODS:
Real-time PCR and flow cytometry were applied to test the expression of TLRs in hPDLSCs and the positive cell percentage of TLR. hPDLSCs were cultured in osteogenic medium for 7 to 14 days with different TLR agonists at various concentrations . The effect of different TLR on osteogenic differentiation of hPDLSCs was evaluated by alizarin red S staining, alkaline phosphatase (ALP) staining and ALP activity assay. Western blotting was used to analyze the phosphorylation levels of extracellular regulated protein kinases (ERK), c-Jun N-terminal protein kinase (JNK), P38, AKT and expression of Runx2 an osteogenic related gene after treatment with TLR agonists, compared with the effect of inhibitors of mitogen activated protein kinase (MAPK) or protein kinase B (PKB or AKT) on Runx2 expression of hPDLSCs cultured in osteogenic medium.
RESULTS:
Higher expressions of TLR1,3,4,6 were found in hPDLSCs through real-time PCR. Positive cell percentage of TLR was determined by flow cytometry and described as TLR1: 2.82%±0.68%; TLR2: 1.26%±0.09%; TLR3: 13.23%±2.05%; TLR4: 3.64%±0.79%; TLR6: 3.21%±1.64%, whose tendency was comparable to their mRNA expression in hPDLSCs. Most TLR ligands had no effect on the ALP staining, activity and mineralization of hPDLSCs at lower concentration except for 0.1 mg/L PolyI:C could induce the osteogenic ability of hPDLSCs. On the contrary, Higher concentration of TLR ligands (PolyI:C: 10 mg/L, LPS: 10 mg/L , Pam3CSK4: 1 mg/L, FSL-1: 50 μg/L) had obviously inhibitory effect on osteogenic differentiation of hPDLSCs. Activation of TLR using higher concentration of TLR ligands could downregulate the phosphorylation levels of ERK, P38, JNK and AKT, and also reduced the expression of Runx2, compared with the untreated control. The inhibitors of MAPK (U0126, SP600125,SB203580) and inhibitor of AKT (perifosine) could also inhibit Runx2 expression.
CONCLUSION
Higher concentration of TLR ligands could inhibit osteogenic differentiation of hPDLSCs. This inhibitory effect seemed to be related to decreased phosphorylation of MAPK and AKT.
Cell Differentiation
;
Cells, Cultured
;
Humans
;
Ligaments
;
Mitogen-Activated Protein Kinases/metabolism*
;
Osteogenesis
;
Periodontal Ligament/metabolism*
;
Phosphorylation
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Stem Cells
;
Toll-Like Receptors/metabolism*
8.Gene-metabolite network analysis in different nonalcoholic fatty liver disease phenotypes.
Xiao Lin LIU ; Ya Nan MING ; Jing Yi ZHANG ; Xiao Yu CHEN ; Min De ZENG ; Yi Min MAO
Experimental & Molecular Medicine 2017;49(1):e283-
We sought to identify common key regulators and build a gene-metabolite network in different nonalcoholic fatty liver disease (NAFLD) phenotypes. We used a high-fat diet (HFD), a methionine-choline-deficient diet (MCDD) and streptozocin (STZ) to establish nonalcoholic fatty liver (NAFL), nonalcoholic steatohepatitis (NASH) and NAFL+type 2 diabetes mellitus (T2DM) in rat models, respectively. Transcriptomics and metabolomics analyses were performed in rat livers and serum. A functional network-based regulation model was constructed using Cytoscape with information derived from transcriptomics and metabolomics. The results revealed that 96 genes, 17 liver metabolites and 4 serum metabolites consistently changed in different NAFLD phenotypes (>2-fold, P<0.05). Gene-metabolite network analysis identified ccl2 and jun as hubs with the largest connections to other genes, which were mainly involved in tumor necrosis factor, P53, nuclear factor-kappa B, chemokine, peroxisome proliferator activated receptor and Toll-like receptor signaling pathways. The specifically regulated genes and metabolites in different NAFLD phenotypes constructed their own networks, which were mainly involved in the lipid and fatty acid metabolism in HFD models, the inflammatory and immune response in MCDD models, and the AMPK signaling pathway and response to insulin in HFD+STZ models. Our study identified networks showing the general and specific characteristics in different NAFLD phenotypes, complementing the genetic and metabolic features in NAFLD with hepatic and extra-hepatic manifestations.
AMP-Activated Protein Kinases
;
Animals
;
Complement System Proteins
;
Diabetes Mellitus
;
Diet
;
Diet, High-Fat
;
Insulin
;
Liver
;
Metabolism
;
Metabolomics
;
Models, Animal
;
Non-alcoholic Fatty Liver Disease*
;
Peroxisomes
;
Phenotype
;
Rats
;
Streptozocin
;
Toll-Like Receptors
;
Tumor Necrosis Factor-alpha
9.Progress on mechanisms for pathogensto evade NOD-like receptor and Toll-like receptor signaling pathways.
Journal of Zhejiang University. Medical sciences 2017;46(2):218-224
The innate immune system provides a first line of defense against invading pathogens, in which the pattern recognition receptors (PRR) recognize pathogen-associated molecular patterns (PAMP) and initiate the downstream signaling pathways to eliminate the encountered pathogens. There are two main classes of such signaling pathways: NOD-like receptor (NLR) signaling pathway and Toll-like receptor (TLR) signaling pathway. The microbial pathogens under selective pressure have evolved numerous mechanisms to avoid and/or manipulate the NLR and TLR signal transduction for survival and replication. To evade the NLR signaling pathway, pathogens interfere and/or inhibit inflammasome activation in innate immune cells by producing virulence factors or reducing PAMPs expression. The mechanisms for pathogens to evade TLR signaling pathway include: inhibition of mitogen activated protein kinases (MAPKs) cascade reaction, inhibition of NF-КB activation, and interference of down-stream signal transduction by producing Toll/interleukin-1 receptor (TIR)-containing proteins which bind directly with TLRs or adaptor proteins in the signaling pathway.
Immunity, Innate
;
NLR Proteins
;
immunology
;
Receptors, Interleukin-1
;
metabolism
;
Signal Transduction
;
Toll-Like Receptors
;
immunology
10.Haoqin Qingdan Decoction () and ribavirin therapy downregulate CD14 and toll-like receptor 4 in febrile disease with dampness-heat syndrome in a mouse model.
Huan-Huan LUO ; Feng-Xue ZHANG ; Wei WU ; Xin-Hua WANG
Chinese journal of integrative medicine 2016;22(10):768-773
OBJECTIVETo evaluate the effect of Chinese medicine Haoqin Qingdan Decoction (, HQD) for febrile disease dampness-heat syndrome (FDDHS).
METHODSForty mice were divided into four groups, including normal control, FDDHS (induced by Radix et Rhizoma Rhei recipe and influenza virus A1 FM1 model), HQD, and the ribavirin groups (10 in each). The normal control and FDDHS groups were administered normal saline. HQD and the ribavirin groups were administered HQD and ribavirin intragastrically once daily at a dose of 64 g/(kg d) and 0.07 g/(kg d), respectively for 7 days. Lethargy, rough hair, diarrhea, tongue color and sole color were evaluated for pathological changes in morphology. The tongue and lung tissues were collected for histology. The CD14 and toll-like receptor 4 (TLR4) expression levels were measured using real-time quantitative polymerase chain reaction.
RESULTSMore than 80% of the FDDHS mice showed hypokinesia and lethargy, and pathological changes associated with rough hair, diarrhea, tongue color and sole color. With advanced treatment for 7 days, the thick greasy tongue fur of the HQD and ribavirin groups were thinner than that of the FDDHS group (P<0.05), and it was the thinnest in the ribavirin group as compared with that in other groups (P<0.05). The CD14 and TLR4 expression levels in the lung tissues of HQD and ribavirin groups significantly delined compared with the model group (P<0.05 or P<0.01). CD14 was down-regulated more remarkably in the HQD group compared with the ribavirin group (P<0.05), whereas the converse was true with TLR4 (P<0.05).
CONCLUSIONSWe established a FDDHS mouse model showing systemic clinical symptoms. Both HQD and ribavirin can inhibit the expression of CD14 and TLR4 in FDDHS mice, while the effect of ribavirin might be much more violent. The expression changes of CD14 and TLR4 consistently refers to lipopolysaccharide, the commonly and hotly inducing factor in FDDHS.
Animals ; Behavior, Animal ; Disease Models, Animal ; Down-Regulation ; drug effects ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Fever ; drug therapy ; pathology ; Gene Expression Profiling ; Lipopolysaccharide Receptors ; genetics ; metabolism ; Lung ; drug effects ; pathology ; Mice, Inbred BALB C ; Ribavirin ; pharmacology ; therapeutic use ; Syndrome ; Toll-Like Receptor 4 ; genetics ; metabolism

Result Analysis
Print
Save
E-mail