1.Inhibitory Effect of Cinobufotalin on Macrophage Inflammatory Factor Storm and Its Mechanism.
Xi-Xi LIU ; Chen-Cheng LI ; Jing YANG ; Wei-Guang ZHANG ; Re-Ai-La JIANATI ; Xiao-Li ZHANG ; Zu-Qiong XU ; Xing-Bin DAI ; Fang TIAN ; Bi-Qing CHEN ; Xue-Jun ZHU
Journal of Experimental Hematology 2023;31(3):880-888
		                        		
		                        			OBJECTIVE:
		                        			To investigate the inflammatory effects of Cinobufotalin on monocytes in resting state and macrophages in activated state and its molecular mechanism.
		                        		
		                        			METHODS:
		                        			THP-1 cells were stimulated with Phorbol 12-myristate 13-acetate to induce differentiation into macrophages. Lipopolysaccharides was added to activate macrophages in order to establish macrophage activation model. Cinobufotalin was added to the inflammatory cell model for 24 h as a treatment. CCK-8 was used to detect cell proliferation, Annexin V /PI double staining flow cytometry was used to detect cell apoptosis, flow cytometry was used to detect macrophage activation, and cytometric bead array was used to detect cytokines. Transcriptome sequencing was used to explore the gene expression profile regulated by Cinobufotalin. Changes in the significantly regulated molecules were verified by real-time quantitative polymerase chain reaction and Western blot.
		                        		
		                        			RESULTS:
		                        			1∶25 concentration of Cinobufotalin significantly inhibited the proliferation of resting monocytes(P<0.01), and induced apoptosis(P<0.01), especially the activated macrophages(P<0.001, P<0.001). Cinobufotalin significantly inhibited the activation of macrophages, and significantly down-regulated the inflammatory cytokines(IL-6, TNF-α, IL-1β, IL-8) released by activated macrophages(P<0.001). Its mechanism was achieved by inhibiting TLR4/MYD88/P-IκBa signaling pathway.
		                        		
		                        			CONCLUSION
		                        			Cinobufotalin can inhibit the inflammatory factors produced by the over-activation of macrophages through TLR4/MYD88/P-IκBa pathway, which is expected to be applied to the treatment and research of diseases related to the over-release of inflammatory factors.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Toll-Like Receptor 4/metabolism*
		                        			;
		                        		
		                        			Myeloid Differentiation Factor 88/genetics*
		                        			;
		                        		
		                        			Macrophages/metabolism*
		                        			;
		                        		
		                        			Cytokines/metabolism*
		                        			;
		                        		
		                        			Lipopolysaccharides/pharmacology*
		                        			;
		                        		
		                        			NF-kappa B
		                        			
		                        		
		                        	
2.miR-18a ameliorates inflammation and tissue injury in a mouse model of allergic rhinitis via blocking TLR4/NF-κB pathway.
Jun YANG ; Qingyun LI ; Lu WANG ; Hui XIE
Chinese Journal of Cellular and Molecular Immunology 2023;39(8):680-685
		                        		
		                        			
		                        			Objective To investigate the role of microRNA-18a (miR-18a) in the pathogenesis of allergic rhinitis in mice. Methods Twenty-two BALB/c mice were randomly divided into a blank group, a model group and a miR-18a group. Mice in the model group and the miR-18a group were injected intraperitoneally with obumin (OVA) suspension to prepare allergic rhinitis models, and mice in the miR-18a group were simultaneously given lentiviral vector plasmid for overexpression of miR-18a. Allergy symptoms were evaluated by the behavioral score and HE staining. The plasma levels of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor α (TNF-α) were measured by ELISA. The distribution of CD45+ cells in nasal mucosa was measured by immunofluorescence histochemistry, and CD45+ cells in nasal lavage fluid were measured by flow cytometry. The mRNA expression levels of IL-1β, IL-6 and TNF-α in nasal mucosa tissues were measured by fluorescence quantitative PCR, and the protein expressions of Toll like receptor 4 (TLR4), nuclear factor κB p65 (NF-κB p65), inhibitor of NF-κB α (IκBα) and phosphorylated IκBα (p-IκBα) in nasal mucosa were measured by Western blot analysis. Results Compared with the blank group, the plasma levels of IL-1β, IL-6, and TNF-α in the model group increased significantly. The number of CD45+ cells in both nasal mucosa tissue and nasal irrigation fluid increased, and the mRNA levels of IL-1β, IL-6 and TNF-α and the protein expression levels of TLR4, NF-κB p65 and p-IκBα in nasal mucosa increased. Compared with the model group, the plasma levels of IL-1β, IL-6 and TNF-α in the miR-18a group decreased significantly. The number of CD45+ cells in both nasal mucosa tissue and nasal lavage fluid decreased, and the mRNA levels of IL-1β, IL-6 and TNF-α and the exprotein expression levels of TLR4, NF-κB p65 and p-IκBα in nasal mucosa decreased. Conclusion miR-18a can inhibit the occurrence and development of allergic rhinitis, and its molecular mechanism is related to the inhibition of TLR4/NF-κB pathway activation.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			Interleukin-6/genetics*
		                        			;
		                        		
		                        			MicroRNAs/genetics*
		                        			;
		                        		
		                        			NF-kappa B/metabolism*
		                        			;
		                        		
		                        			NF-KappaB Inhibitor alpha
		                        			;
		                        		
		                        			Rhinitis, Allergic
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			Toll-Like Receptor 4/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/genetics*
		                        			
		                        		
		                        	
3.Salidroside improves intestinal mucosal immune status of rats under compound stress of hypoxia and training via inhibiting TLR4/NF-κB signaling pathway.
Qin XU ; Hongyan PENG ; Yongmei ZHAO ; Tuolihanayi TUOLIKEN ; Wendong BAI
Chinese Journal of Cellular and Molecular Immunology 2023;39(9):801-806
		                        		
		                        			
		                        			Objective To investigate the effect of salidroside on intestinal mucosal immune status in rats under compound stress of hypoxia and training (HTCS) and the mechanism. Methods SD rats were randomly divided into HTCS model group (model), placebo group (placebo) and salidroside group (salidro). Model group received no intervention, and placebo and salidro group received intraperitoneal injection of normal saline and salidroside, respectively. Then, ileum tissue of rats were collected and the intestinal damage was assayed by HE staining and Chiu scores. Intestinal permeability indices, including serum D-diamine oxidase (DAO), D-lactic acid (DLA) and endotoxin (END) and secretory immunoglobulin A (sIgA) of intestinal tissue were detected by ELISA. T lymphocyte subsets of intestinal tissue were detected by flow cytometry. Expression of tight junction molecules, including ZO-1, Claudin-3, occluding, were detected by PCR and western blot. Activation of TLR4/NF-κB signaling pathway was detected by Western blot analysis. Results Compared with model group and placebo group, salidro group had the decreased intestinal mucosal injury and low Chiu score, and the level of intestinal permeability indices including serum DAO, DLA and END fell off. CD4+ T cell percentage, CD4+/CD8+ ratio and sIgA level were went up, while CD8+ T cell percentage was went down. mRNA and the level of protein expressions of ZO-1, claudin-3 and occludin increased, while activation of TLR4/NF-κB signaling pathway was inhibited. Conclusion Salidroside can alleviate the intestinal barrier injury and improve intestinal mucosal immune status of rats under compound stress of hypoxia and training via inhibiting TLR4/NF-κB signalling pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			NF-kappa B
		                        			;
		                        		
		                        			Toll-Like Receptor 4/genetics*
		                        			;
		                        		
		                        			Claudin-3
		                        			;
		                        		
		                        			Hypoxia
		                        			;
		                        		
		                        			Immunoglobulin A, Secretory
		                        			;
		                        		
		                        			Signal Transduction
		                        			
		                        		
		                        	
4.Activation of intestinal mucosal TLR4/NF-κB pathway is associated with renal damage in mice with pseudo-sterile IgA nephropathy.
Yuyan TANG ; Weiqian SUN ; Haidong HE ; Ping HU ; Meiping JIN ; Ping LIU ; Lusheng HUANG ; Xudong XU
Chinese Journal of Cellular and Molecular Immunology 2023;39(10):865-871
		                        		
		                        			
		                        			Objective To investigate the effect of intestinal mucosal Toll-like receptor 4/nuclear factor κB (TLR4/NF-κB) signaling pathway on renal damage in pseudo-sterile IgA nephropathy (IgAN) mice. Methods C57BL/6 mice were randomly divided into experimental group (pseudosterile mouse model group), control group (IgAN mouse model group), pseudosterile mouse blank group, and normal mouse blank group. Pseudosterile mice were established by intragastric administration of quadruple antibiotics once a day for 14 days. The pseudosterile IgAN mouse model was set up by combination of oral bovine serum albumin (BSA) administration and staphylococcal enterotoxin B (SEB) injection. The pathological changes of renal tissue were observed by immunofluorescence staining and PAS staining, and the intestinal mucosa barrier damage indicators lipopolysaccharide(LPS), soluble intercellular adhesion molecule 1(sICAM-1) and D-lactate(D-LAC) were analyzed by ELISA. Biochemical analysis was used to test 24 hour urine protein, serum creatinine and blood urea nitrogen. The mRNA and protein levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and nuclear factor κB (NF-κB) were detected by reverse transcription PCR and Western blot analysis. Results The kidney damage of pseudosterile IgAN mice was more severe than that of IgAN mice, and the expressions of intestinal mucosal barrier damage markers (LPS, sICAM-1 and D-LAC) were significantly increased in pseudosterile IgAN mice. In addition, the expressions of TLR4, MyD88, and NF-κB level were all up-regulated in the intestinal tissues of IgAN pseudosterile mice. Conclusion Intestinal flora disturbance leads to intestinal mucosal barrier damage and induces activation of TLR4 signaling pathway to mediate renal injury in IgAN.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Glomerulonephritis, IGA
		                        			;
		                        		
		                        			NF-kappa B
		                        			;
		                        		
		                        			Toll-Like Receptor 4/genetics*
		                        			;
		                        		
		                        			Lipopolysaccharides
		                        			;
		                        		
		                        			Myeloid Differentiation Factor 88/genetics*
		                        			;
		                        		
		                        			Kidney
		                        			;
		                        		
		                        			Intestinal Mucosa
		                        			;
		                        		
		                        			Infertility
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			
		                        		
		                        	
5.Tripterygium hypoglaucum extract ameliorates adjuvant-induced arthritis in mice through the gut microbiota.
Jianghui HU ; Jimin NI ; Junping ZHENG ; Yanlei GUO ; Yong YANG ; Cheng YE ; Xiongjie SUN ; Hui XIA ; Yanju LIU ; Hongtao LIU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(10):730-744
		                        		
		                        			
		                        			Traditionally, Tripterygium hypoglaucum (Levl.) Hutch (THH) are widely used in Chinese folk to treat rheumatoid arthritis (RA). This study aimed to investigate whether the anti-RA effect of THH is related with the gut microbiota. The main components of prepared THH extract were identified by HPLC-MS. C57BL/6 mice with adjuvant-induced arthritis (AIA) were treated with THH extract by gavage for one month. THH extract significantly alleviated swollen ankle, joint cavity exudation, and articular cartilage destruction in AIA mice. The mRNA and protein levels of inflammatory mediators in muscles and plasma indicated that THH extract attenuated inflammatory responses in the joint by blocking TLR4/MyD88/MAPK signaling pathways. THH extract remarkably restored the dysbiosis of the gut microbiota in AIA mice, featuring the increases of Bifidobacterium, Akkermansia, and Lactobacillus and the decreases of Butyricimonas, Parabacteroides, and Anaeroplasma. Furthermore, the altered bacteria were closely correlated with physiological indices and drove metabolic changes of the intestinal microbiota. In addition, antibiotic-induced pseudo germ-free mice were employed to verify the role of the intestinal flora. Strikingly, THH treatment failed to ameliorate the arthritis symptoms and signaling pathways in pseudo germ-free mice, which validates the indispensable role of the intestinal flora. For the first time, we demonstrated that THH extract protects joint inflammation by manipulating the intestinal flora and regulating the TLR4/MyD88/MAPK signaling pathway. Therefore, THH extract may serve as a microbial modulator to recover RA in clincial practice.ver RA in clincial practice.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Gastrointestinal Microbiome
		                        			;
		                        		
		                        			Tripterygium
		                        			;
		                        		
		                        			Myeloid Differentiation Factor 88/genetics*
		                        			;
		                        		
		                        			Toll-Like Receptor 4/genetics*
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Arthritis, Experimental/drug therapy*
		                        			
		                        		
		                        	
6.Effects of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination on inflammatory responses in atherosclerotic mice.
Wan-Yu LI ; Qing-Yin LONG ; Xin-Ying FU ; Lu MA ; Wei TAN ; Yan-Ling LI ; Shun-Zhou XU ; Wei ZHANG ; Chang-Qing DENG
China Journal of Chinese Materia Medica 2023;48(15):4164-4172
		                        		
		                        			
		                        			The study aims to observe the effects and explore the mechanisms of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination in the treatment of the inflammatory response of mice with atherosclerosis(AS) via the Toll-like receptor 4(TLR4)/myeloid differentiation primary response protein 88(MyD88)/nuclear factor-κB(NF-κB) signaling pathway. Male ApoE~(-/-) mice were randomly assigned into a model group, a Buyang Huanwu Decoction group, an Astragali Radix-Angelicae Sinensis Radix combination group, and an atorvastatin group, and male C57BL/6J mice of the same weeks old were used as the control group. Other groups except the control group were given high-fat diets for 12 weeks to establish the AS model, and drugs were administrated by gavage. Aortic intimal hyperplasia thickness, blood lipid level, plasma inflammatory cytokine levels, M1/M2 macrophage markers, and expression levels of proteins in TLR4/MyD88/NF-κB pathway in the vessel wall were measured to evaluate the effects of drugs on AS lesions and inflammatory responses. The results showed that the AS model was successfully established with the ApoE~(-/-) mice fed with high-fat diets. Compared with the control group, the model group showed elevated plasma total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c) levels(P<0.05), thickened intima(P<0.01), and increased plasma tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) levels(P<0.01). Moreover, the model group showed increased expression of vascular cell adhesion molecule-1(VCAM-1) and inducible nitric oxide synthase(iNOS)(P<0.01), inhibited expression of endothelial nitric oxide synthase(eNOS) and cluster of differentiation 206(CD206)(P<0.01), and up-regulated mRNA and protein levels of TLR4, MyD88, NF-κB inhibitor alpha(IκBα), and NF-κB in the vessel wall(P<0.05). Compared with the model group, Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination lowered the plasma TC and LDL-c levels(P<0.01), alleviated the intimal hyperplasia(P<0.01), and reduced the plasma TNF-α and IL-6 levels(P<0.05). Moreover, the two interventions promoted the expression of eNOS and CD206(P<0.05), inhibited the expression of VCAM-1 and iNOS(P<0.01), and down-regulated the mRNA and protein levels of TLR4, MyD88, IκBα, and NF-κB(P<0.05) in the vessel wall. This study indicated that Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination could delay the progression of AS, inhibit the polarization of vascular wall macrophages toward M1 type, and attenuate vascular inflammatory response by inhibiting the activation of TLR4/MyD88/NF-κB signaling pathway in the vascular wall. Astragali Radix and Angelicae Sinensis Radix were the main pharmacological substances in Buyang Huanwu Decoction for alleviating the AS vascular inflammatory response.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			NF-kappa B/metabolism*
		                        			;
		                        		
		                        			Toll-Like Receptor 4/metabolism*
		                        			;
		                        		
		                        			NF-KappaB Inhibitor alpha/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			Myeloid Differentiation Factor 88/metabolism*
		                        			;
		                        		
		                        			Vascular Cell Adhesion Molecule-1/metabolism*
		                        			;
		                        		
		                        			Cholesterol, LDL
		                        			;
		                        		
		                        			Hyperplasia
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Atherosclerosis/genetics*
		                        			;
		                        		
		                        			Apolipoproteins E/therapeutic use*
		                        			;
		                        		
		                        			RNA, Messenger
		                        			
		                        		
		                        	
7.Long noncoding RNA ZEB1-AS1 aggravates cerebral ischemia/reperfusion injury in rats through the HMGB1/TLR-4 signaling axis.
Jing WANG ; Xue Yi CHEN ; Li SUN ; Xue Mei CHEN ; Hui LI ; Bin Rui XIONG ; Hai Hua WANG
Journal of Southern Medical University 2022;42(8):1134-1142
		                        		
		                        			OBJECTIVE:
		                        			To investigate the role of long non-coding RNA ZEB1-AS1 in cerebral ischemia/reperfusion injury (CI/RI).
		                        		
		                        			METHODS:
		                        			We detected the temporal changes of ZEB1-AS1 and HMGB1 expression using qPCR and Western blotting in SD rats following CI/RI induced by middle cerebral artery occlusion (MCAO). The rat models of CI/RI were subjected to injections of vectors for ZEB1-AS1 overexpression or knockdown into the lateral ventricle, and the changes in cognitive function, brain water content, blood-brain barrier integrity, and IL-1β and TNF-α levels in the cerebrospinal fluid (CSF) and serum were observed. Neuronal loss and cell apoptosis in the cortex of the rat models were detected by FJC and TUNEL methods, and HMGB1 and TLR-4 expressions were analyzed with Western blotting. We also examined the effects of ZEB1-AS1 knockdown on apoptosis and expressions of HMGB1 and TLR-4 in SH-SY5Y cells with oxygen-glucose deprivation/reoxygenation (OGD/R).
		                        		
		                        			RESULTS:
		                        			In CI/RI rats, the expressions of ZEB1-AS1 and HMGB1 in the brain tissue increased progressively with the extension of reperfusion time, reaching the peak levels at 24 h followed by a gradual decline. ZEB1-AS1 overexpression significantly aggravated icognitive impairment and increased brain water content, albumin content in the CSF, and IL-1β and TNF-α levels in the CSF and serum in CI/RI rats (P < 0.05), while ZEB1-AS1 knockdown produced the opposite effects (P < 0.05 or 0.01). ZEB1-AS1 overexpression obviously increased the number of FJC-positive neurons in the cortex and enhanced the expressions of HMGB1 and TLR-4 in the rat models (P < 0.01); ZEB1-AS1 knockdown significantly reduced the number of FJC-positive neurons and lowered HMGB1 and TLR-4 expressions (P < 0.01). In SH-SY5Y cells with OGD/R, ZEB1-AS1 knockdown significantly suppressed cell apoptosis and lowered the expressions of HMGB1 and TLR-4 (P < 0.01).
		                        		
		                        			CONCLUSION
		                        			ZEB1-AS1 overexpression aggravates CI/RI in rats through the HMGB1/TLR-4 signaling axis.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation/genetics*
		                        			;
		                        		
		                        			HMGB1 Protein/metabolism*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Infarction, Middle Cerebral Artery
		                        			;
		                        		
		                        			Neuroblastoma
		                        			;
		                        		
		                        			RNA, Long Noncoding/metabolism*
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Reperfusion Injury
		                        			;
		                        		
		                        			Toll-Like Receptor 4/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			Water
		                        			
		                        		
		                        	
8.Effect of modified Danggui Shaoyao Powder on SOCS3/TLR4 signaling pathway in rats with chronic atrophic gastritis.
Xiao-Jia ZHENG ; Ping-Ping CHEN ; Yang LIU ; Jian-Hui SUN ; Nai-Lin ZHANG ; Bin WANG ; Qi-Quan LIU
China Journal of Chinese Materia Medica 2022;47(15):4128-4135
		                        		
		                        			
		                        			This study aims to investigate the effect of modified Danggui Shaoyao Powder on the suppressor of cytokine signaling 3(SOCS3)/Toll-like receptor 4(TLR4) signaling pathway in gastric tissue of rats with chronic atrophic gastritis(CAG).Sixty SPF-grade SD rats were randomly assigned into the normal group, model group, Moluo Pills group, and high-, medium-, and low-dose groups of modified Danggui Shaoyao Powder.The rats in other groups except the normal group were treated with N-methyl-N'-nitro-N-nitrosoguanidine(MNNG) to establish the CAG model.After 12 weeks of modeling, the rats in each group were administrated with corresponding drugs by gavage for 8 weeks.After the last administration, the histopathological changes of rat gastric mucosa were observed via hematoxylin-eosin(HE) staining.The serum levels of IL-6, TNF-α, and CRP were determined by enzyme-linked immunosorbent assay(ELISA).The mRNA levels of SOCS3 and TLR4 were determined by real-time PCR.The protein levels of SOCS3, TLR4, JAK2, p-JAK2, STAT3, and p-STAT3 in rat gastric tissue were measured by Western blot.Immunohistochemical method was employed to determine the protein levels of NF-κB, MyD88, NLRP3, Bcl-2, Bax, and Bad in rat gastric tissue.The results showed that modified Danggui Shaoyao Powder alleviated gastric mucosal atrophy of rats, significantly lowered the levels of IL-6, TNF-α, and CRP in rat serum, up-regulated the mRNA level of SOCS3, and down-regulated the mRNA level of TLR4 in rat gastric tissue.Furthermore, modified Danggui Shaoyao Powder up-regulated the protein level of SOCS3, down-regulated the protein levels of TLR4, p-JAK2, p-STAT3, NF-κB, MyD88, NLRP3, Bax, and Bad, and promoted the expression of Bcl-2 protein.Therefore, modified Danggui Shaoyao Powder may mitigate the gastric mucosal atrophy of rats by regulating the SOCS3/TLR4 signaling pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Atrophy
		                        			;
		                        		
		                        			Gastritis, Atrophic/genetics*
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			Myeloid Differentiation Factor 88/metabolism*
		                        			;
		                        		
		                        			NF-kappa B/metabolism*
		                        			;
		                        		
		                        			NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
		                        			;
		                        		
		                        			Powders
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Suppressor of Cytokine Signaling 3 Protein/metabolism*
		                        			;
		                        		
		                        			Toll-Like Receptor 4/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			bcl-2-Associated X Protein/metabolism*
		                        			
		                        		
		                        	
9.Effect of Tetrastigma hemsleyanum on sepsis and mechanism based on network pharmacology and experimental verification.
Jing-Ru ZHENG ; Chun-Lian JI ; Liang-Hui ZHAN ; Jin-Bao PU ; Li YAO
China Journal of Chinese Materia Medica 2022;47(17):4744-4754
		                        		
		                        			
		                        			Based on network pharmacology and in vivo experiment, this study explored the therapeutic effect of Tetrastigma hemsle-yanum(SYQ) on sepsis and the underlying mechanism. The common targets of SYQ and sepsis were screened out by network pharmacology, and the "SYQ-component-target-sepsis" network was constructed. The protein-protein interaction(PPI) network was established by STRING. Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment were performed based on DAVID to predict the anti-sepsis mechanism of SYQ. The prediction results of network pharmacology were verified by animal experiment. The network pharmacology results showed that the key anti-sepsis targets of SYQ were tumor necrosis factor(TNF), interleukin(IL)-6, IL-1β, IL-10, and cysteinyl asparate specific proteinase 3(caspase-3), which were mainly involved in Toll-like receptor 4(TLR4)/myeloid differentiation factor 88(MyD88)/nuclear factor kappaB(NF-κB) signaling pathway. The results of animal experiment showed that SYQ can decrease the content of C-reactive protein(CRP), procalcitonin(PCT), lactate dehydrogenase(LDH), IL-6, TNF-α, and IL-1β, increase the content of IL-10, and down-regulate the protein levels of Bcl-2-associa-ted X(Bax)/B-cell lymphoma 2(Bcl2), cleaved caspase-3, TLR4, MyD88, and p-NF-κB p65/NF-κB p65. In summary, SYQ plays an anti-inflammatory role in the treatment of sepsis by acting on the key genes related to inflammation and apoptosis, such as TNF-α, IL-6, IL-lβ, IL-10, Bax, Bcl2, and cleaved caspase-3. The mechanism is the likelihood that it suppresses the TLR4/MyD88/NF-κB signaling pathway, which verifies relative prediction results of network pharmacology.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Anti-Inflammatory Agents/therapeutic use*
		                        			;
		                        		
		                        			C-Reactive Protein
		                        			;
		                        		
		                        			Caspase 3/metabolism*
		                        			;
		                        		
		                        			Interleukin-10
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			Lactate Dehydrogenases/metabolism*
		                        			;
		                        		
		                        			Myeloblastin/metabolism*
		                        			;
		                        		
		                        			Myeloid Differentiation Factor 88/metabolism*
		                        			;
		                        		
		                        			NF-kappa B/metabolism*
		                        			;
		                        		
		                        			Network Pharmacology
		                        			;
		                        		
		                        			Procalcitonin/therapeutic use*
		                        			;
		                        		
		                        			Sepsis/genetics*
		                        			;
		                        		
		                        			Toll-Like Receptor 4/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			bcl-2-Associated X Protein/metabolism*
		                        			
		                        		
		                        	
10.Activity of Codonopsis canescens against rheumatoid arthritis based on TLRs/MAPKs/NF-κB signaling pathways and its mechanism.
Yu-Jie WANG ; Xiao-Yu ZHONG ; Xin-Hong WANG ; Yuan-Han ZHONG ; Lin LIU ; Fang-Yuan LIU ; Jin-Xiang ZENG ; Ji-Xiao ZHU ; Xiao-Lang DU ; Min LI ; Gang REN ; Guo-Yue ZHONG ; Xiao-Min WANG
China Journal of Chinese Materia Medica 2022;47(22):6164-6174
		                        		
		                        			
		                        			This paper aims to explore the activity of Codonopsis canescens extract against rheumatoid arthritis(RA) based on the Toll-like receptors(TLRs)/mitogen-activated protein kinases(MAPKs)/nuclear factor kappa B(NF-κB) signaling pathways and its mechanism. The ultra-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry(UPLC-Q-TOF-MS) was used to identify the components of C. canescens extract. Forty-eight male SD rats were randomly divided into six groups, namely the normal group, the model group, the methotrexate(MTX) tablet group, and the low, medium, and high-dose C. canescens extract(ZDS-L, ZDS-M, and ZDS-H) groups, with 8 rats in each group. The model of collagen-induced arthritis in rats was induced by injection of bovine type Ⅱ collagen emulsion. MTX(2.5 mg·kg~(-1)), ZDS-L, ZDS-M, and ZDS-H(0.3 g·kg~(-1), 0.6 g·kg~(-1), and 1.2 g·kg~(-1)) were administrated by gavage. Rats in the normal group and the model group received distilled water. MTX was given once every three days for 28 days, and the rest medicines were given once daily for 28 days. Body weight, degree of foot swelling, arthritis index, immune organ index, synovial histopathological changes, and serum levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), and interleukin-6(IL-6) were observed. Protein expressions of TLR2, TLR4, NF-κB p65, p38 MAPK, and p-p38 MAPK in rats were determined by Western blot. Thirty-four main components were identified by UPLC-Q-TOF-MS, including 15 flavonoids, 7 phenylpropanoids, 4 terpenoids, 4 organic acids, 2 esters, and 2 polyalkynes. As compared with the normal group, the body weight of the model group was significantly decreased(P<0.01), and foot swelling(P<0.05, P<0.01), arthritis index(P<0.01), and the immune organ index(P<0.01) were significantly increased. The synovial histopathological injury was obviously observed in the model group. The serum levels of inflammatory factors TNF-α, IL-1β, and IL-6 were significantly increased(P<0.01), and the protein expression levels of TLR2, TLR4, NF-κB p65, p-p38 MAPK/p38 MAPK in the synovial tissue were significantly increased(P<0.01) in the model group. As compared with the model group, the body weights of the ZDS dose groups were increased(P<0.01), and the degree of foot swelling(P<0.01) and the arthritis index were decreased(P<0.05, P<0.01). The immune organ index was decreased(P<0.01) in the ZDS dose groups, and the synovial tissue hyperplasia and inflammatory cell infiltration were alleviated. The serum levels of TNF-α, IL-1β, and IL-6 were significantly decreased(P<0.05, P<0.01), and the protein expression levels of TLR2, TLR4, NF-κB p65, p-p38 MAPK/p38 MAPK were decreased(P<0.05, P<0.01) in the ZDS dose groups. C. canescens extract containing apigenin, tricin, chlorogenic acid, aesculin, ferulic acid, caffeic acid, and oleanolic acid has a good anti-RA effect, and the mechanism may be related to the inhibition of TLRs/MAPKs/NF-κB signaling pathways.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cattle
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Arthritis, Experimental/drug therapy*
		                        			;
		                        		
		                        			Arthritis, Rheumatoid/drug therapy*
		                        			;
		                        		
		                        			Body Weight
		                        			;
		                        		
		                        			Codonopsis/chemistry*
		                        			;
		                        		
		                        			Interleukin-6/blood*
		                        			;
		                        		
		                        			NF-kappa B/genetics*
		                        			;
		                        		
		                        			p38 Mitogen-Activated Protein Kinases/metabolism*
		                        			;
		                        		
		                        			Plant Extracts/therapeutic use*
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Toll-Like Receptor 2/metabolism*
		                        			;
		                        		
		                        			Toll-Like Receptor 4/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/pharmacology*
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail