1.∆9 -Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo
Tim RUHL ; Sofija BENIC ; Melissa PLUM ; Bong-Sung KIM ; Justus P. BEIER ; Benedikt SCHAEFER
Tissue Engineering and Regenerative Medicine 2025;22(2):225-235
BACKGROUND:
Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆9-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.
METHODS:
Human ASCs were exposed to increasing concentrations of THC. Resazurin conversion was applied to investigate the effect on metabolic activity, cell number was assessed by crystal violet staining, tri-linear differentiation was evaluated by specific colorimetric approaches, and the release of growth factors was analyzed by ELISA. Two groups of mice were treated daily either with a low dose of THC (3 mg/kg) or a vehicle solution. After 3 weeks, adipose tissue was obtained from excised fat deposits, homogenized and tested for growth factor contents.
RESULTS
THC decreased ASC proliferation but increased metabolic activity as well as adipogenic and chondrogenic differentiation. A low concentration of THC (1 µM) enhanced the growth factor release by ASCs. The concentration of these cytokines was also increased in adipose tissue of mice treated with THC.CONLUSION:Our results indicate that chronic activation of the endocannabinoid system promoted differentiation and growth factor release of ASCs, which could be of specific value for enhancing the regenerative potential of adipose tissue.
2.Regenerative Functions of Regulatory T Cells and Current Strategies Utilizing Mesenchymal Stem Cells in Immunomodulatory Tissue Regeneration
Jinsung AHN ; Bowon KIM ; Alvin Bacero BELLO ; James J. MOON ; Yoshie ARAI ; Soo-Hong LEE
Tissue Engineering and Regenerative Medicine 2025;22(2):167-180
BACKGROUND:
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis and facilitating tissue regeneration by fostering an environment conducive to tissue repair. However, in damaged tissues, excessive inflammatory responses can overwhelm the immunomodulatory capacity of Tregs, compromising their functionality and potentially hindering effective regeneration. Mesenchymal stem cells (MSCs) play a key role in enhancing Treg function. MSCs enhance Treg activity through indirect interactions, such as cytokine secretion, and direct interactions via membrane proteins.
METHODS:
This review examines the regenerative functions of Tregs across various tissues, including bone, cartilage, muscle, and skin, and explores strategies to enhance Treg functionality using MSCs. Advanced techniques, such as the overexpression of relevant genes in MSCs, are highlighted for their potential to further enhance Treg function. Additionally, emerging technologies utilizing extracellular vesicles (EVs) and cell membrane-derived vesicles derived from MSCs offer promising alternatives to circumvent the potential side effects associated with live cell therapies. This review proposes approaches to enhance Treg function and promote tissue regeneration and also outlines future research directions.
RESULTS
AND CONCLUSION: This review elucidates recent technological advancements aimed at enhancing Treg function using MSCs and examines their potential to improve tissue regeneration efficiency.
3.Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment
Shen CHEN ; Chao XIE ; Xiaoxi LONG ; Xianwei WANG ; Xudong LI ; Peng LIU ; Jiabin LIU ; Zuyong WANG
Tissue Engineering and Regenerative Medicine 2025;22(2):195-210
BACKGROUND:
Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
METHODS:
A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring. The impact of process parameters on fiber size and morphology was investigated. The structure and functions of the scaffolds were evaluated through material characterization and assessments of cellular biocompatibility.
RESULTS:
The new setup enabled controlled deposition of fibers in different designed orientations. The fabricated small-diameter vascular scaffolds consisted of an inner layer of longitudinally oriented fibers and an outer layer of circumferentially oriented fibers (L + C vascular scaffold). Key parameters, including rotational speed, the utilization of the auxiliary electrode, and top-to-collector distance (TCD) significantly influenced fiber orientation. Additionally, voltage, TCD, feed rate, needle size, auxiliary electrode and collector-auxiliary electrode distance affected fiber diameter and distribution. Mechanical advantages and improved surface wettability of L + C vascular scaffold were confirmed through tensile testing and water contact angle. Cellular experiments indicated that L + C vascular scaffold facilitated cell adhesion and proliferation, with human umbilical vein endothelial cells and smooth muscle cells attaching and elongating along the fiber direction of the inner and outer layer, respectively.
CONCLUSION
This study demonstrated the feasibility of fabricating fiber-aligned, thick-walled vascular scaffolds using a modified electrospinning setup. The findings provided insights into how the auxiliary electrode, specific collector influenced fiber deposition, potentially advancing biomimetic vascular scaffold engineering.
4.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
5.Reduction of Low-Density Lipoprotein Cholesterol by Mesenchymal Stem Cells in a Mouse Model of Exogenous Cushing’s Syndrome
Yu-Hee KIM ; Seonghee JEONG ; Kyung-Ah CHO ; So-Youn WOO ; Seung-Ho HAN ; Kyung-Ha RYU
Tissue Engineering and Regenerative Medicine 2025;22(2):237-248
BACKGROUND:
Exogenous Cushing’s syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing’s syndrome.
METHODS:
Exogenous Cushing’s syndrome model mice was generated by corticosterone administration in the drinking water for 5 weeks, and T-MSCs were injected intraperitoneally twice during the third week. Serum lipid profiles were measured using a chemistry analyzer. HepG2 cells were treated with dexamethasone and co-cultured with T-MSCs.Expression levels of genes involved in cholesterol metabolism were examined using real-time PCR. Low-density lipoprotein receptor (LDLR) protein levels were determined using western blotting and immunohistochemistry. Liver RNA extracted from the CORT and CORT ? MSC mouse groups was used for transcriptome sequencing analysis and protein– protein interaction analysis.
RESULTS:
Weight reduction and improvements in dyslipidemia by T-MSC administration were observed only in female mice. T-MSCs reduce circulating LDL cholesterol levels by downregulating liver X receptor a (LXRa) and inducible degrader of LDLR (IDOL) expression, thereby stabilizing LDLRs in the liver. Transcriptome analysis of liver tissue revealed pathways that are regulated by T-MSCs administration.
CONCLUSION
Administration of MSCs to female mice receiving chronic corticosterone treatment reduced the circulating LDL cholesterol level by downregulating the LXRa–IDOL axis in hepatocytes. These results suggest that T-MSCs may offer a novel therapeutic strategy for managing exogenous Cushing’s syndrome by regulating cholesterol metabolism.
6.Bone Marrow Aspiration Concentrate in the Treatment of Osteoarthritis: A Review of its Current Clinical Application
Tissue Engineering and Regenerative Medicine 2025;22(2):159-166
BACKGROUND:
Bone marrow aspiration concentrate (BMAC) has gained acceptance as a safe orthobiologic for treating osteoarthritis (OA), despite lacking robust supporting evidence. Although several publications have documented the use of BMAC in OA, evidence confirming its unequivocal efficacy remains limited.
METHODS:
This review aims to summarize the current clinical evidence regarding BMAC as a therapeutic for OA, while also presenting the author’s perspective. Sixteen studies were reviewed, including ten randomized clinical trials (RCTs) and six cohort studies.
RESULTS:
From the review of existing literature, BMAC injections do not appear to significantly improve pain and function compared to conventional therapies such as hyaluronic acid and corticosteroids, although some studies report a longer duration of effectiveness. Furthermore, the evidence for structural improvement, which was the original rationale for cell therapy, is seldom reported.
CONCLUSION
In light of these findings, it is suggested that high-quality data from a large patient cohort is needed to determine the role of BMAC injections in OA treatment and address reimbursement issues. From the author’s perspective, the introduction of a national registry system that provides valuable information on the cost-effectiveness of various orthopedic procedures may offer a solution.
7.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
8.Enhancing Cardiomyocyte Purity through Lactate-Based Metabolic Selection
Tissue Engineering and Regenerative Medicine 2025;22(2):249-260
BACKGROUND:
Direct reprogramming of fibroblasts into chemically induced cardiomyocyte-like cells (CiCMs) through small molecules presents a promising cell source for cardiac regeneration and therapeutic development. However, the contaminating non-cardiomyocytes, primarily unconverted fibroblasts, reduce the effectiveness of CiCMs in various applications. This study investigated a metabolic selection approach using lactate to enrich CiCMs by exploiting the unique metabolic capability of cardiomyocytes to utilize lactate as an alternative energy source.
METHODS:
Primary mouse embryonic fibroblasts (pMEFs) were reprogrammed into CiCMs and subjected to a glucosedepleted, lactate-supplemented medium for 4 days. Afterward, cell viability was analyzed, and cardiomyocyte efficiency was assessed through the expression of cardiac-specific markers. Additionally, electrophysiological function was evaluated by examining drug-induced responses.
RESULTS:
The lactate treatment led to a significant decrease in the viability of non-cardiomyocytes (pMEF-LAC), while CiCMs (CiCM-LAC) showed minimal cell death. Specifically, the expression of all cardiac-related markers was increased in CiCM-LAC. Metabolically purified CiCMs exhibited enhanced contractile force and increased contraction frequency compared to non-purified CiCMs, as well as an elevated responsiveness to drugs.
CONCLUSION
This study demonstrates that lactate-based metabolic selection is an effective and practical approach for enriching CiCMs, offering a cost-effective alternative to other purification methods. The application of this strategy could potentially broaden the accessibility and utility of reprogrammed cardiomyocytes in cardiac regeneration and therapeutic development.
9.Biofabricated 3D Intestinal Models as an Alternative to AnimalBased Approaches for Drug Toxicity Assays
Larissa Bueno TOFANI ; Thayná Mendonc ¸a AVELINO ; Rafael Júnior de AZEVEDO ; Giovanna Blazutti ELIAS ; Melissa Dibbernn GANZERLA ; Maiara Ferreira TERRA ; Vanessa Kiraly Thomaz RODRIGUES ; Renata Santos RABELO ; Samarah Vargas HARB ; Ana Carolina Migliorini FIGUEIRA
Tissue Engineering and Regenerative Medicine 2025;22(2):181-194
BACKGROUND:
The main challenge in new drug development is accurately predicting the human response in preclinical models.
METHODS:
In this study, we developed three different intestinal barrier models using advanced biofabrication techniques: (i) a manual model containing Caco-2 and HT-29 cells on a collagen bed, (ii) a manual model with a Caco-2/HT-29 layer on a HDFn-laden collagen layer, and (iii) a 3D bioprinted model incorporating both cellular layers. Each model was rigorously tested for its ability to simulate a functional intestinal membrane.
RESULTS:
All models successfully replicated the structural and functional aspects of the intestinal barrier. The 3D bioprinted intestinal model, however, demonstrated superior epithelial barrier integrity enhanced tight junction formation, microvilli development, and increased mucus production. When subjected to Ibuprofen, the 3D bioprinted model provided a more predictive response, underscoring its potential as a reliable in vitro tool for drug toxicity testing.
CONCLUSION
Our 3D bioprinted intestinal model presents a robust and predictive platform for drug toxicity assessments, significantly reducing the need for animal testing. This model not only aligns with ethical testing protocols but also offers enhanced accuracy in predicting human responses, thereby advancing the field of drug development.
10.Development of Zinc-Containing Chitosan/Gelatin Coatings with Immunomodulatory Effect for Soft Tissue Sealing around Dental Implants
Jing HAN ; Jorine G. F. SANDERS ; Lea ANDRÉE ; Bart A. J. A. van OIRSCHOT ; Adelina S. PLACHOKOVA ; Jeroen J. J. P. van den BEUCKEN ; Sander C. G. LEEUWENBURGH ; Fang YANG
Tissue Engineering and Regenerative Medicine 2025;22(1):57-75
BACKGROUND:
Soft tissue integration (STI) around dental implant abutments is a prerequisite to prevent bacterial invasion and achieve successful dental implant rehabilitation. However, peri-implant STI is a major challenge after dental abutment placement due to alterations in the immune microenvironment upon surgical dental implant installation.
METHODS:
Based on known immunomodulatory effects of zinc, we herein deposited zinc/chitosan/gelatin (Zn/CS/Gel) coatings onto titanium substrates to study their effect on macrophages. First, we exposed macrophages to cell culture media containing different zinc ion (Zn2+) concentrations. Next, we explored the immunomodulatory effect of Zn/CS/Gel coatings prepared via facile electrophoretic deposition (EPD).
RESULTS:
We found that Zn2+ effectively altered the secretome by reducing the secretion of pro-inflammatory and enhancing pro-regenerative cytokine secretion, particularly at a Zn2+ supplementation of approximately 37.5 μM. Zn/CS/Gel coatings released Zn2+ in a concentration range which effectively stimulated pro-regenerative macrophage polarization as demonstrated by M2 macrophage polarization. Additionally, the impact of these Zn2+-exposed macrophages on gingival fibroblasts incubated in conditioned medium showed stimulated adhesion, proliferation, and collagen secretion.
CONCLUSION
Our promising results suggest that controlled release of Zn2+ from Zn/CS/Gel coatings could be applied to immunomodulate peri-implant STI, and to enhance dental implant survival.

Result Analysis
Print
Save
E-mail