1.Compound Xishu Granules Inhibit Proliferation of Hepatocellular Carcinoma Cells by Regulating Ferroptosis
Yuan TIAN ; Yuxi WANG ; Zhen LIU ; Yuncheng MA ; Hongyu ZHU ; Xiaozhu WANG ; Qian LI ; Jian GAO ; Weiling WANG ; Wenhui XU ; Ting WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):37-45
ObjectiveTo study the mechanism of compound Xishu granules (CXG) in inhibiting the proliferation of hepatocellular carcinoma cells by regulating ferroptosis. MethodsThe transplanted tumor model of human Huh7 was established with nude mice and the successfully modeled mice were randomized into model, Fufang Banmao (0.21 g·kg-1), low-dose (1.87 g·kg-1) CXG, medium-dose (3.74 g·kg-1) CXG, and high-dose (7.49 g·kg-1) CXG groups. Mice were administrated with drinking water or CXG for 28 days, and the body weight and tumor volume were measured every 4 days. Hematoxylin-eosin staining was employed to observe the histopathological changes of tumors. The cell-counting kit-8 (CCK-8) was used to examine the survival rate of Huh7 cells treated with different concentrations (0, 31.25, 62.5, 125, 250, 500, 1 000 mg·L-1) of CXG for 24 h and 48 h. CA-AM, DCFH-DA, and C11-BODIPY581/591 fluorescent probes were used to determine the intracellular levels of ferrous ion (Fe2+), reactive oxygen species (ROS), and lipid peroxide (LPO), respectively. The colorimetric method was employed to measure the levels of glutathione (GSH) and superoxide dismutase (SOD). Western blot was employed to determine the protein levels of glutathione peroxidase 4 (GPX4), transferrin receptor 1 (TFR1), and ferritin heavy chain 1 (FTH1), respectively. ResultsIn the animal experiment, compared with the model group, the drug treatment groups showed reductions in the tumor volume from day 12 (P<0.01). After treatment, the Fufang Banmao and low-, medium-, and high-dose CXG groups had lower tumor volume, relative tumor volume, and tumor weight than the model group (P<0.05), with tumor inhibition rates of 48.99%, 79.93%, 91.38%, and 97.36%, respectively. Moreover, the CXG groups had lower tumor volume and relative tumor volume (P<0.05 in all the three dose groups) and lower tumor weight (P<0.05 in medium-dose and high-dose groups) than the Fufang Banmao group. Compared with the model group, the drug treatment groups showed reduced number of tumor cells, necrotic foci with karyopyknosis, nuclear fragmentation, and nucleolysis, and the high-dose CXG group showed an increase in the proportion of interstitial fibroblasts. In the cell experiment, compared with the blank group, CXG reduced the survival rate of Huh7 cells in a dose-dependent manner after incubation for 24 h and 48 h (P<0.05). Compared with the blank group, the RSL3 group and the low-, medium-, and high-dose CXG groups showed a decrease in the relative fluorescence intensity of CA-AM and increases in the fluorescence intensity of DCFH-DA and fluorescence ratio of C11-BODIPY581/591, which indicated elevations in the levels of Fe2+ (P<0.01), ROS (P<0.05), and LPO (P<0.01), respectively. Compared with the blank group, the RSL3 and low-, medium-, and high-dose CXG groups showed lowered levels of GSH and SOD (P<0.05). In addition, the RSL3 group and the medium- and high-dose CXG groups showed down-regulated expression of GPX4 and FTH1 (P<0.05), and the low- and high-dose CXG groups presented up-regulated expression of TFR1 (P<0.05). ConclusionCXG suppresses the proliferation of hepatocellular carcinoma cells by inducing ferroptosis via downregulating the GSH-GPX4 signaling axis and increasing intracellular Fe2+and LPO levels.
2.Two visual arthroplasty techniques for L5-S1 disc herniation:a half-year follow-up evaluation of clinical outcomes
Qi LU ; Maji SUN ; Xuezhi WANG ; Ting SONG ; Yiming MA ; Feng YUAN ; Hongliang CHEN
Chinese Journal of Tissue Engineering Research 2025;29(9):1841-1847
BACKGROUND:Currently,spinal endoscopic technology has become the mainstream technology in minimally invasive spinal surgery.The specifications of the instruments for different operating systems are different,and the choice of specific surgical protocols needs to be combined with the actual situation of the patient and the choice of the clinical surgeon. OBJECTIVE:To compare the early efficacy of percutaneous endoscopic interlaminar discectomy for L5-S1 disc herniation under the iLESSYS Delta System and Endo-Surgi Plus System. METHODS:Totally 80 patients with L5-S1 disc herniation were treated with percutaneous endoscopic interlaminar discectomy.Patients were divided into two groups based on the endoscopic system used.Among them,37 cases received the iLESSYS Delta System(Delta group)and 43 cases received the Endo-Surgi Plus System(Plus group).Patient demographic characteristics,perioperative indicators,and complications were analyzed between the two groups.Clinical outcomes were quantified using back and leg visual analog scale scores,Oswestry Disability Index,and Japanese Orthopaedic Association scores at 1 day,1,3,and 6 months after surgery.Patient satisfaction was assessed according to modified MacNab criteria at final follow-up. RESULTS AND CONCLUSION:(1)The operative time and number of arthroplasties in the Plus group were less than those in the Delta group,and the differences were statistically significant(P<0.05).(2)Compared with the preoperative period,the visual analog scale scores,Oswestry Disability Index,and Japanese Orthopaedic Association scores of patients in both groups improved at all follow-up time points,and the difference was statistically significant(P<0.001).(3)There was no statistically significant difference in the comparison of pain visual analog scale scores,Oswestry Disability Index,and Japanese Orthopaedic Association scores of patients in the two groups(P>0.05).(4)At 6-month follow-up after surgery,the MacNab standard excellent and good rates in the Delta group and Plus group were 81%and 79%,respectively,with no significant difference(P=0.823).(5)The incidence of complications was 3%in the Delta group and 2%in the Plus group,but there was no significant difference between the two groups(P=0.914).(6)It is concluded that both iLESSYS Delta and Endo-Surgi Plus surgical systems achieved satisfactory early clinical results in the treatment of lumbar disc herniation,with Endo-Surgi Plus surgical moulding being more efficient and safer.
3.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
4.Controllability Analysis of Structural Brain Networks in Young Smokers
Jing-Jing DING ; Fang DONG ; Hong-De WANG ; Kai YUAN ; Yong-Xin CHENG ; Juan WANG ; Yu-Xin MA ; Ting XUE ; Da-Hua YU
Progress in Biochemistry and Biophysics 2025;52(1):182-193
ObjectiveThe controllability changes of structural brain network were explored based on the control and brain network theory in young smokers, this may reveal that the controllability indicators can serve as a powerful factor to predict the sleep status in young smokers. MethodsFifty young smokers and 51 healthy controls from Inner Mongolia University of Science and Technology were enrolled. Diffusion tensor imaging (DTI) was used to construct structural brain network based on fractional anisotropy (FA) weight matrix. According to the control and brain network theory, the average controllability and the modal controllability were calculated. Two-sample t-test was used to compare the differences between the groups and Pearson correlation analysis to examine the correlation between significant average controllability and modal controllability with Fagerström Test of Nicotine Dependence (FTND) in young smokers. The nodes with the controllability score in the top 10% were selected as the super-controllers. Finally, we used BP neural network to predict the Pittsburgh Sleep Quality Index (PSQI) in young smokers. ResultsThe average controllability of dorsolateral superior frontal gyrus, supplementary motor area, lenticular nucleus putamen, and lenticular nucleus pallidum, and the modal controllability of orbital inferior frontal gyrus, supplementary motor area, gyrus rectus, and posterior cingulate gyrus in the young smokers’ group, were all significantly different from those of the healthy controls group (P<0.05). The average controllability of the right supplementary motor area (SMA.R) in the young smokers group was positively correlated with FTND (r=0.393 0, P=0.004 8), while modal controllability was negatively correlated with FTND (r=-0.330 1, P=0.019 2). ConclusionThe controllability of structural brain network in young smokers is abnormal. which may serve as an indicator to predict sleep condition. It may provide the imaging evidence for evaluating the cognitive function impairment in young smokers.
5.Efficacy and Mechanism of Shuanghua Drink in Treating Primary Dysmenorrhea Based on COX-2/NF-κB Signaling Pathway
Yuncheng MA ; Yuanyuan SHI ; Zhen LIU ; Yuxi WANG ; Yuan TIAN ; Qian LI ; Xiaozhu WANG ; Cheng HE ; Wenhui XU ; Weiling WANG ; Jian GAO ; Ting WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):72-80
ObjectiveTo evaluate the efficacy of Shuanghua drink in treating primary dysmenorrhea in the rat model and explore its mechanism of action. MethodsAn oxytocin-induced writhing mouse model was established to evaluate the analgesic effect of Shuanghua drink. Forty-eight non-pregnant female institute of cancer research (ICR) mice were randomly divided into six groups, including a blank group, a model group, an ibuprofen group (85.00 mg·kg-1), a low-dose group of Shuanghua drink (7.14 mL·kg-1), a medium-dose group of Shuanghua drink (14.28 mL·kg-1), and a high-dose group of Shuanghua drink (28.57 mL·kg-1). Each group consisted of eight mice. All treatment groups received daily intragastric administration at corresponding doses for 10 consecutive days. One hour after the final administration, 2 U of oxytocin was intraperitoneally injected per mouse. The writhing latency and number of writhing within 20 minutes were recorded. A primary dysmenorrhea rat model was established by using estradiol benzoate and oxytocin to evaluate the inhibitory effect of Shuanghua drink on the contraction of uterine smooth muscle. Forty-eight non-pregnant female Sprague-Dawley (SD) rats were divided into six groups, including a blank group, a model group, an ibuprofen group (51.00 mg·kg-1), a low-dose group of Shuanghua drink (4.28 mL·kg-1), a medium-dose group of Shuanghua drink (8.57 mL·kg-1), and a high-dose group of Shuanghua drink (17.10 mL·kg-1). Each group consisted of eight rats. Rats received subcutaneous injections of estradiol benzoate for 10 consecutive days to enhance uterine sensitivity. On the eleventh day, oxytocin (2 U/rat) was intraperitoneally administered to induce abnormal uterine contractions for establishing the primary dysmenorrhea model. All treatment groups received daily intragastric administration from the second day of modeling for 10 days. The effects of Shuanghua drink were evaluated by using parameters including uterine motility and the variation rate of uterine motility. The mechanism of action was investigated in rats with primary dysmenorrhea. The content of prostaglandin F2α (PGF2α), prostaglandin E2 (PGE2), thromboxane B2 (TXB2), prostacyclin metabolite (6-keto-PGF1α), and β-endorphin (β-EP) in uterine tissue of rats was detected by using enzyme-linked immunosorbent assay (ELISA). The changes in the content of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) were analyzed via colorimetric assay. Western blot was performed to determine the content of phosphorylated inhibitor of kappa B kinase beta (p-IKKβ)/IKKβ, phosphorylated inhibitor of kappa B alpha (p-IκBα), IκBα, phosphorylated p65 (p-p65), p65, and cyclooxygenase-2 (COX-2) proteins in uterine tissue of rats. ResultsIn the oxytocin-induced writhing mouse model, the model group exhibited significantly shortened writhing latency and increased writhing frequency compared to the control group (P<0.01). Both the ibuprofen group and the high-dose group of Shuanghua drink displayed prolonged writhing latency (P<0.05), while the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink exhibited reduced writhing frequency (P<0.01). In the primary dysmenorrhea rat model, the uterine motility and its variation rate in the model group were significantly higher than those in the blank group (P<0.01). These parameters were markedly suppressed by ibuprofen and Shuanghua drink at all tested doses (P<0.01). For the mechanism of action, the model group showed significantly increased PGF2α/PGE2, TXB2/6-keto-PGF1α, NO, and iNOS in uterine tissue (P<0.05, P<0.01) and significantly decreased β-EP (P<0.01). These parameters were significantly attenuated in the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink. The PGF2α/PGE2 (P<0.01), TXB2/6-keto-PGF1α (P<0.01), NO (medium-dose group P<0.05), and iNOS (P<0.01) were reduced, and the β-EP (medium-dose group P<0.05) was up-regulated. Compared to the model group, the ibuprofen group and medium-dose group of Shuanghua drink showed significantly increased content of β-EP in the serum of rats (P<0.05). Compared to the blank group, the model group showed significantly elevated expressions of COX-2, p-IKKβ/IKKβ, p-IκBα/IκBα, and p-p65/p65 proteins (P<0.01) and significantly reduced anti-inflammatory protein IκBα (P<0.05). Compared to the model group, the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink showed significantly reduced expressions of COX-2 (P<0.01), p-IKKβ/IKKβ (P<0.01), p-IκBα/IκBα (P<0.05, P<0.01), and p-p65/p65(P<0.01) and up-regulated expression of IκBα protein (P<0.05, P<0.01). ConclusionShuanghua drink effectively alleviates primary dysmenorrhea through analgesia and suppression of abnormal contractions of uterine smooth muscle. Its mechanism may be mediated by reduced levels of PGF2α/PGE2, TXB2/6-keto-PGF1α, iNOS, and NO, elevated β-EP level, and inhibited COX-2/NF-κB signaling pathway.
6.Efficacy and Mechanism of Shuanghua Drink in Treating Primary Dysmenorrhea Based on COX-2/NF-κB Signaling Pathway
Yuncheng MA ; Yuanyuan SHI ; Zhen LIU ; Yuxi WANG ; Yuan TIAN ; Qian LI ; Xiaozhu WANG ; Cheng HE ; Wenhui XU ; Weiling WANG ; Jian GAO ; Ting WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):72-80
ObjectiveTo evaluate the efficacy of Shuanghua drink in treating primary dysmenorrhea in the rat model and explore its mechanism of action. MethodsAn oxytocin-induced writhing mouse model was established to evaluate the analgesic effect of Shuanghua drink. Forty-eight non-pregnant female institute of cancer research (ICR) mice were randomly divided into six groups, including a blank group, a model group, an ibuprofen group (85.00 mg·kg-1), a low-dose group of Shuanghua drink (7.14 mL·kg-1), a medium-dose group of Shuanghua drink (14.28 mL·kg-1), and a high-dose group of Shuanghua drink (28.57 mL·kg-1). Each group consisted of eight mice. All treatment groups received daily intragastric administration at corresponding doses for 10 consecutive days. One hour after the final administration, 2 U of oxytocin was intraperitoneally injected per mouse. The writhing latency and number of writhing within 20 minutes were recorded. A primary dysmenorrhea rat model was established by using estradiol benzoate and oxytocin to evaluate the inhibitory effect of Shuanghua drink on the contraction of uterine smooth muscle. Forty-eight non-pregnant female Sprague-Dawley (SD) rats were divided into six groups, including a blank group, a model group, an ibuprofen group (51.00 mg·kg-1), a low-dose group of Shuanghua drink (4.28 mL·kg-1), a medium-dose group of Shuanghua drink (8.57 mL·kg-1), and a high-dose group of Shuanghua drink (17.10 mL·kg-1). Each group consisted of eight rats. Rats received subcutaneous injections of estradiol benzoate for 10 consecutive days to enhance uterine sensitivity. On the eleventh day, oxytocin (2 U/rat) was intraperitoneally administered to induce abnormal uterine contractions for establishing the primary dysmenorrhea model. All treatment groups received daily intragastric administration from the second day of modeling for 10 days. The effects of Shuanghua drink were evaluated by using parameters including uterine motility and the variation rate of uterine motility. The mechanism of action was investigated in rats with primary dysmenorrhea. The content of prostaglandin F2α (PGF2α), prostaglandin E2 (PGE2), thromboxane B2 (TXB2), prostacyclin metabolite (6-keto-PGF1α), and β-endorphin (β-EP) in uterine tissue of rats was detected by using enzyme-linked immunosorbent assay (ELISA). The changes in the content of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) were analyzed via colorimetric assay. Western blot was performed to determine the content of phosphorylated inhibitor of kappa B kinase beta (p-IKKβ)/IKKβ, phosphorylated inhibitor of kappa B alpha (p-IκBα), IκBα, phosphorylated p65 (p-p65), p65, and cyclooxygenase-2 (COX-2) proteins in uterine tissue of rats. ResultsIn the oxytocin-induced writhing mouse model, the model group exhibited significantly shortened writhing latency and increased writhing frequency compared to the control group (P<0.01). Both the ibuprofen group and the high-dose group of Shuanghua drink displayed prolonged writhing latency (P<0.05), while the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink exhibited reduced writhing frequency (P<0.01). In the primary dysmenorrhea rat model, the uterine motility and its variation rate in the model group were significantly higher than those in the blank group (P<0.01). These parameters were markedly suppressed by ibuprofen and Shuanghua drink at all tested doses (P<0.01). For the mechanism of action, the model group showed significantly increased PGF2α/PGE2, TXB2/6-keto-PGF1α, NO, and iNOS in uterine tissue (P<0.05, P<0.01) and significantly decreased β-EP (P<0.01). These parameters were significantly attenuated in the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink. The PGF2α/PGE2 (P<0.01), TXB2/6-keto-PGF1α (P<0.01), NO (medium-dose group P<0.05), and iNOS (P<0.01) were reduced, and the β-EP (medium-dose group P<0.05) was up-regulated. Compared to the model group, the ibuprofen group and medium-dose group of Shuanghua drink showed significantly increased content of β-EP in the serum of rats (P<0.05). Compared to the blank group, the model group showed significantly elevated expressions of COX-2, p-IKKβ/IKKβ, p-IκBα/IκBα, and p-p65/p65 proteins (P<0.01) and significantly reduced anti-inflammatory protein IκBα (P<0.05). Compared to the model group, the ibuprofen group and the low-dose, medium-dose, and high-dose groups of Shuanghua drink showed significantly reduced expressions of COX-2 (P<0.01), p-IKKβ/IKKβ (P<0.01), p-IκBα/IκBα (P<0.05, P<0.01), and p-p65/p65(P<0.01) and up-regulated expression of IκBα protein (P<0.05, P<0.01). ConclusionShuanghua drink effectively alleviates primary dysmenorrhea through analgesia and suppression of abnormal contractions of uterine smooth muscle. Its mechanism may be mediated by reduced levels of PGF2α/PGE2, TXB2/6-keto-PGF1α, iNOS, and NO, elevated β-EP level, and inhibited COX-2/NF-κB signaling pathway.
7.Association between physical activity and sleep quality among middle school students
LIU Yuan, ZHANG Ting,YIN Xiaojian, WU Huipan, WANG Jinxian, ZHANG Yingkun, GUO Yaru
Chinese Journal of School Health 2025;46(6):783-787
Objective:
To explore the association between physical activity and sleep quality among middle school students, so as to provide reference for adolescent sleep improvement.
Methods:
From September to December 2023, 5 713 middle school students aged 13-18 years were selected from Shanghai, Suzhou, Taiyuan, Wuyuan, Xingyi and Urumqi by stratified cluster random sampling method. Pittsburgh Sleep Quality Index (PSQI) and Evaluation of Physical Activity Levels of Children and Adolescents Aged 7-18 Years were used to investigate and evaluate sleep quality and physical activity. Comparisons between groups were made using the t-test, Mann-Whitney U-test, and associations between physical activity and sleep quality of middle school students were analyzed using Spearman correlation and linear regression methods.
Results:
The total PSQI scores were 4.0(2.0,6.0) and 5.0 (3.0,6.0) for boys and girls, respectively, with significant sex difference ( Z =-10.90, P <0.01); light physical activity(LPA) and moderate to vigorous physical activity(MVPA) of boys were 18.57 (2.86, 42.86) and 68.57 (35.71, 119.18)min, and girls were 14.29 (0.00, 30.00) and 55.71 (31.43, 92.86)min respectively, and the differences were statistically significant ( Z =3.65, -8.65 , P <0.01). The results of Spearman correlation regression showed that adolescents MVPA was negatively correlated with the total PSQI score ( r =-0.04, P <0.01). After controlling for variables such as mental health, nutritional status and maximum oxygen uptake, the results of linear regression analysis showed that PSQI total score negatively predicted MVPA among middle school students ( B =-4.76, 95% CI =-7.16 to -2.36, P <0.05).
Conclusion
The longer the duration of physical activity among middle school students, the better the quality of sleep.
8.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
9.Polysaccharides from Chinese herbal medicine: a review on the hepatoprotective and molecular mechanism.
Jifeng LI ; Haolin GUO ; Ying DONG ; Shuo YUAN ; Xiaotong WEI ; Yuxin ZHANG ; Lu DONG ; Fei WANG ; Ting BAI ; Yong YANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):4-14
Polysaccharides, predominantly extracted from traditional Chinese medicinal herbs such as Lycium barbarum, Angelica sinensis, Astragalus membranaceus, Dendrobium officinale, Ganoderma lucidum, and Poria cocos, represent principal bioactive constituents extensively utilized in Chinese medicine. These compounds have demonstrated significant anti-inflammatory capabilities, especially anti-liver injury activities, while exhibiting minimal adverse effects. This review summarized recent studies to elucidate the hepatoprotective efficacy and underlying molecular mechanisms of these herbal polysaccharides. It underscored the role of these polysaccharides in regulating hepatic function, enhancing immunological responses, and improving antioxidant capacities, thus contributing to the attenuation of hepatocyte apoptosis and liver protection. Analyses of molecular pathways in these studies revealed the intricate and indispensable functions of traditional Chinese herbal polysaccharides in liver injury management. Therefore, this review provides a thorough examination of the hepatoprotective attributes and molecular mechanisms of these medicinal polysaccharides, thereby offering valuable insights for the advancement of polysaccharide-based therapeutic research and their potential clinical applications in liver disease treatment.
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Liver Diseases/drug therapy*
;
Antioxidants
;
Polysaccharides/therapeutic use*
;
Medicine, Chinese Traditional
10.Screening and analysis of differentially expressed genes for calcium homeostasis in ameloblasts with high fluoride intervention
Ting HUANG ; Xia LIU ; Zhu WANG ; Ting CHEN ; Bin CHEN ; Guohui BAI ; Jiayuan WU ; Yuan TIAN
Chinese Journal of Tissue Engineering Research 2024;28(16):2481-2487
BACKGROUND:Fluorosis is a disorder of enamel development caused by long-term intake of large amounts of fluoride during enamel development. OBJECTIVE:To further explore the molecular mechanism of dental fluorosis formation by screening the differentially expressed genes associated with calcium homeostasis in ameloblasts by transcriptome sequencing technology. METHODS:LS8 cells were treated with 0,0.4,0.8,1.6,3.2 and 6.4 mmol/L sodium fluoride(NaF)for 24,48 and 72 hours to observe the effects of different concentrations of NaF on the morphology,cell activity and intracellular Ca2+ concentration of LS8 cells.The differentially expressed genes were screened by transcriptome sequencing and validated. RESULTS AND CONCLUSION:After 24 hours of treatment,the cells treated with 0,0.4,and 0.8 mmol/L NaF were in good growth condition,with increased cell number and clear cell outline.When the NaF concentration was≥1.6 mmol/L,the cells were gradually shrunken and became smaller and the number of cells decreased with the increase of NaF concentration.After 48 and 72 hours of treatment,the number of cells increased in the 0,0.4 mmol/L NaF groups,while gradually decreased in the 0.8,1.6,3.2 mmol/L NaF groups,with rounded and smaller cell morphology.The cells in the 6.4 mmol/L NaF group were shrunken,rounded and suspended in the medium,with almost no adherent cells.When treated with the same concentration of NaF,LS8 cells were in optimal growth after 24 hours of treatment.Results from cell counting kit-8 assay showed that when treated with the same concentration of NaF,the cell activity decreased with the increase of treatment time;when the treatment time was the same,the cell activity decreased with the increase of NaF concentration.After 24 hours of treatment,the intracellular Ca2+ concentration increased with the increase of NaF concentration.Transcriptome sequencing analysis identified genes involved in the regulation of cellular calcium homeostasis:Hsp90b1,Canx,Calr,and Hspa5 that were significantly upregulated(P<0.05)and Cacna1a that was significantly downregulated(P<0.05).To conclude,the inhibitory effect of NaF on LS8 cell proliferation may be related to the abnormal increase in intracellular Ca2+ concentration,and the mechanism may be caused by the upregulation of the expression of protein processing and synthesis pathways Hsp90b1,Canx,Calr,and Hspa5 and the downregulation of the expression of calcium signaling pathway Cacna1a.


Result Analysis
Print
Save
E-mail